Startseite Performance of Ni/YSZ cermet cathode prepared by mechanical alloying for high temperature electrolysis of water vapor (steam): effect of anode and cathode thicknesses on the efficiency of hydrogen production
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Performance of Ni/YSZ cermet cathode prepared by mechanical alloying for high temperature electrolysis of water vapor (steam): effect of anode and cathode thicknesses on the efficiency of hydrogen production

  • Sungkyu Lee , Kyoung-Hoon Kang , Hyun Seon Hong , Yong Seung Yun und Sang-Kook Woo
Veröffentlicht/Copyright: 11. Juni 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Ni/YSZ (Y2O3-stabilized ZrO2) composite cathode is fabricated by high-nergy ball milling of Ni and YSZ powders for high temperature electrolysis of water vapor. Composite powder composition, time and rotation speed of ball milling were optimized by trial and error for suitable performance with maximum efficiency of fabricated cathode in high temperature electrolysis of water vapor (steam) at 800°C. The composite powders thus synthesized were characterized using various analytical tools such as X-ray diffraction, scanning electron microscopy and particle size analysis, and a self-supporting planar type unit cell was prepared with Ni/YSZ composite cathode and Pt paste anode screen-printed on each side of YSZ electrolyte disk (30 mm dia.) and then sintered at 1450°C for high temperature electrolysis. X-ray diffraction and particle size analysis results showed that the Ni/YSZ composite effectively consisted of crystalline Ni and YSZ distributed on a sub-micron scale and evenly distributed without aggregation of particles. To study the effect of anode and cathode thickness on the efficiency of the hydrogen production rate, screen-printing of anode and cathode was carried out on each side of YSZ electrolyte to three different thickness values during the fabrication of a self-supporting planar type unit cell which operated quite satisfactorily during high temperature electrolysis at 800°C: a significantly higher hydrogen production rate of 13 sccm (standard cubic centimeters per minute) was reproducibly observed for triple screen-printing of anode and cathode over each side of the YSZ electrolyte disk compared to 0.5 sccm for the single screen-printed cathode under an applied direct current of 0.7 mA cm−2. Additionally, linear increase in hydrogen production was observed with applied current for triple screen-printed electrodes in contrast to single and double screen-printed electrodes.


* Correspondence address, Dr. Sungkyu Lee, Project Manager, Plant Engineering Center, Institute for Advanced Engineering, 633-2, Goan-ri, Baegam-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do, 449–863, Korea, Tel.: +52 823 1330 7318, Fax: +52 823 1330 7116, E-mail:

References

[1] J.Udagawa, P.Aguiar, N.P.Brandon: J. Power Sources166 (2007) 127.10.1016/j.jpowsour.2006.12.081Suche in Google Scholar

[2] M.Ni, M.K.H.Leung, D.Y.C.Leung: Electrochim. Acta52 (2007) 6707.10.1016/j.electacta.2007.04.084Suche in Google Scholar

[3] J.S.Herring, J.E.O'Brien, C.M.Stoots, G.L.Hawkes, J.J.Hartvigsen, M.Shahnam: Int. J. Hydrogen Energ.32 (2007) 440.10.1016/j.ijhydene.2006.06.061Suche in Google Scholar

[4] A.Demin, E.Gorbova, P.Tsiakaras: J. Power Sources171 (2007) 205.10.1016/j.jpowsour.2007.01.027Suche in Google Scholar

[5] J.Sigurvinsson, C.Mansilla, P.Lovera, F.Werkoff: Int. J. Hydrogen Energ.32 (2007) 1174.10.1016/j.ijhydene.2006.11.026Suche in Google Scholar

[6] C.Mansilla, J.Sigurvinsson, A.Bontempts, A.Maréchal, F.Werkoff: Energy32 (2007) 423.10.1016/j.energy.2006.07.033Suche in Google Scholar

[7] S.Lee, S.Tsujikawa: Mater. Corros.48 (1997) 364.10.1002/maco.19970480604Suche in Google Scholar

[8] S.Lee, S.Tsujikawa: Mater. Corros.48 (1997) 420.10.1002/maco.19970480704Suche in Google Scholar

[9] S.Lee, K.Maemura, T.Yamamura, S.Nakazawa, K.H.Lee, D.Chang, J.-H.Ahn, H.Chung: Corrosion62 (2006) 13.10.5006/1.3278247Suche in Google Scholar

[10] V.Utgikar, T.Thiesen: Int. J. Hydrogen Energ.31 (2006) 939.10.1016/j.ijhydene.2005.07.001Suche in Google Scholar

[11] S.H.Jensen, P.H.Larsen, M.Mogensen: Int. J. Hydrogen Energ., Article in Press (2007), doi:10.1016/j.ijhydene.2007.04.042.10.1016/j.ijhydene.2007.04.042Suche in Google Scholar

[12] Y.Shin, W.Park, J.Chang, J.Park: Int. J. Hydrogen Energ.32 (2007) 1486.10.1016/j.ijhydene.2006.10.028Suche in Google Scholar

[13] A.V.Virkar, J.Chen, C.W.Tanner, J.-W.Kim: Solid State Ionics131 (2000) 189.10.1016/S0167-2738(00)00633-0Suche in Google Scholar

[14] S.C.Singhal: Solid State Ionics135 (2000) 305.10.1016/S0167-2738(00)00452-5Suche in Google Scholar

[15] H.Koide, Y.Someya, T.Yoshida, T.Maruyama: Solid State Ionics132 (2000) 253.10.1016/S0167-2738(00)00652-4Suche in Google Scholar

[16] P.Holtappels, M.Verbraeken, U.Vogt, D.H.A.Blank, B.A.Boukamp: Solid State Ionics177 (2006) 2029.10.1016/j.ssi.2006.06.018Suche in Google Scholar

[17] B.D.Madsen, S.A.Barnett: Solid State Ionics176 (2005) 2545.10.1016/j.ssi.2005.08.004Suche in Google Scholar

[18] W.Z.Zhu, S.C.Deevi: Mater. Sci. Eng. A362 (2003) 228.10.1016/S0921-5093(03)00620-8Suche in Google Scholar

[19] S.-D.Kim, H.Moon, S.-H.Hyun, J.Moon, J.Kim, H.-W.Lee: J. Power Sources163 (2006) 392.10.1016/j.jpowsour.2006.09.015Suche in Google Scholar

[20] A.Ringuedé, D.Bronine, J.R.Frade: Solid State Ionics146 (2002) 219.10.1016/S0167-2738(01)00996-1Suche in Google Scholar

[21] H.S.Hong, U.-S.Chae, S.T.Choo: J. Power Sources149 (2005) 84.10.1016/j.jpowsour.2005.01.057Suche in Google Scholar

[22] H.S.Hong, U.-S.Chae, S.T.Choo, K.S.Lee: Mater. Sci. For.486 (2005) 662.Suche in Google Scholar

[23] E.Szewczak, J.W.Wyrzykowski: Nanostruct. Mater.12 (1999) 171.10.1016/S0965-9773(99)00091-4Suche in Google Scholar

[24] O.H.Kwon, G.M.Choi: Solid State Ionics177 (2006) 3057.10.1016/j.ssi.2006.07.039Suche in Google Scholar

[25] H.S.Hong, U.-S.Chae, S.-T.Choo: J. Alloys Compd., Article in Press (2007), doi:10.1016/j.jallcom.2006.01.131.10.1016/j.jallcom.2006.01.131Suche in Google Scholar

Received: 2007-2-6
Accepted: 2007-10-19
Published Online: 2013-06-11
Published in Print: 2008-01-01

© 2008, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Editorial
  4. Prof. Dr.-Ing. habil. Dr.-Ing. E. h. Werner Schatt zum 85. Geburtstag
  5. Basic
  6. In-situ reaction synthesis and decomposition of Ta2AlC
  7. A new theoretical equation for temperature dependent self-diffusion coefficients of pure liquid metals
  8. Thermodynamic characterization of liquid alloys with demixing tendency: Bi–Ga
  9. Space charge effects in confined ceramic systems
  10. Solute transport and phase composition in an Al–Mg–Si alloy solidified under conditions of forced flow
  11. Evidence of α → ω phase transition in titanium after high pressure torsion
  12. Thermodynamic properties and elastic constants of Nd–Mg intermetallics: a molecular dynamics study
  13. Microstructure, texture and mechanical properties of the magnesium alloy AZ31 processed by ECAP
  14. Applied
  15. Effect of solidification microstructure and Ca additions on creep strength of magnesium alloy AZ91 processed by Thixomolding
  16. Magnetic hardening mechanism of PrCo5-based ribbons with C addition prepared by melt spinning
  17. Studies on the exchange and dipolar couplings in Nd2Fe14B/α-Fe
  18. Microstructural characteristics and elevated temperature wear of Ti-11Si-16Al alloy
  19. Nickel coating on some organic and carbon fibres by chemical plating
  20. Wear and corrosion properties of nanocrystalline coatings on stainless steel produced by plasma electrolytic nitrocarburizing
  21. The characterisation of microstructural changes in rapidly solidified Al–Fe alloys through measurement of their electrical resistance
  22. Solid inclusion cakes formed during pressure filtration tests of liquid aluminum alloys
  23. Performance of Ni/YSZ cermet cathode prepared by mechanical alloying for high temperature electrolysis of water vapor (steam): effect of anode and cathode thicknesses on the efficiency of hydrogen production
  24. Review
  25. Practical aspects and implications of interfaces in glass-ceramics: a review
  26. Notifications
  27. DGM News
Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.101613/html
Button zum nach oben scrollen