Home Technology In-situ reaction synthesis and decomposition of Ta2AlC
Article
Licensed
Unlicensed Requires Authentication

In-situ reaction synthesis and decomposition of Ta2AlC

  • Chunfeng Hu , Jie Zhang , Yiwang Bao , Jingyang Wang , Meishuan Li and Yanchun Zhou
Published/Copyright: June 11, 2013

Abstract

Dense bulk Ta2AlC ceramic was fabricated by in-situ reaction/hot pressing of Ta, Al and C powders. The reaction path and effects of initial composition on the purity were investigated. It was found that Ta2AlC formed through the reactions between AlTa2 and graphite, or between Ta5Al3C, TaC and graphite at 1500–1550°C. By modifying the molar ratio of the initial Ta, Al, and C powders, single-phase Ta2AlC was prepared at 1550°C under an Ar atmosphere with an optimized composition of Ta: Al: C = 2: 1.2: 0.9. The lattice parameter and a new set of X-ray diffraction data of Ta2AlC were obtained. In addition, Ta2AlC was reported unstable above 1600°C and decomposed to Ta4AlC3, and then to TaCx.


* Correspondence address, Dr. Yanchun Zhou, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China, Tel.: +86 24 2397 1765, Fax: +86 24 2389 1320, E-mail:

References

[1] M.W.Barsoum: Prog. Solid State Chem.28 (2000) 201.10.1016/S0079-6786(00)00006-6Search in Google Scholar

[2] M.W.Barsoum, T.El-Raghy: J. Am. Ceram. Soc.79 (1996) 1953.10.1111/j.1151-2916.1996.tb08018.xSearch in Google Scholar

[3] M.W.Barsoum, D.Brodkin, T.El-Raghy: Scripta Mater.36 (1997) 535.10.1016/S1359-6462(96)00418-6Search in Google Scholar

[4] M.W.Barsoum, T.El-Raghy: Metall. Mater. Trans. A30 (1999) 363.10.1007/s11661-999-0325-0Search in Google Scholar

[5] M.W.Barsoum, T.Zhen, S.R.Kalidindi, M.Radovic, A.Murugaiah: Nature Mater.2 (2003) 107.10.1038/nmat814Search in Google Scholar

[6] H.-I.Yoo, M.W.Barsoum, T.El-Raghy: Nature407 (2000) 581.10.1038/35036686Search in Google Scholar

[7] I.M.Low, S.K.Lee, B.R.Lawn: J. Am. Ceram. Soc.81 (1998) 225.10.1111/j.1151-2916.1998.tb02320.xSearch in Google Scholar

[8] I.M.Low: J. Eur. Ceram. Soc.18 (1998) 709.10.1016/S0955-2219(97)00201-XSearch in Google Scholar

[9] X.H.Wang, Y.C.Zhou: Acta Mater.50 (2002) 3141.Search in Google Scholar

[10] M.W.Barsoum, M.Ali, T.El-Raghy: Metall. Mater. Trans. A31 (2000) 1857.10.1007/s11661-006-0243-3Search in Google Scholar

[11] Y.C.Zhou, X.H.Wang: Mater. Res. Innovat.5 (2001) 87.10.1007/s100190100132Search in Google Scholar

[12] X.H.Wang, Y.C.Zhou: Z. Metallkd.93 (2002) 66.Search in Google Scholar

[13] M.W.Barsoum, I.Salama, T.El-Raghy, J.Golczewski, W.D.Porter, H.Wang, H.J.Seifert, F.Aldinger: Metall. Mater. Trans. A33 (2002) 2775.10.1007/s11661-002-0262-7Search in Google Scholar

[14] I.Salama, T.El-Raghy, M.W.Barsoum: J. Alloys Compd.347 (2002) 271.10.1016/S0925-8388(02)00756-9Search in Google Scholar

[15] I.Salama, T.El-Raghy, M.W.Barsoum: J. Electrochem. Soc.150 (2003) 1.10.1149/1.1545461Search in Google Scholar

[16] S.Gupta, M.W.Barsoum: J. Electrochem. Soc.151 (2004) 24.10.1149/1.1639160Search in Google Scholar

[17] Z.J.Lin, Y.C.Zhou, M.S.Li, J.Y.Wang: Z. Metallkd.96 (2005) 291.Search in Google Scholar

[18] W.Jeitschko, H.Nowotny, F.Benesovky: Monatsh. Chem.94 (1963) 672.10.1007/BF00913068Search in Google Scholar

[19] Z.M.Sun, S.Li, R.Ahujab, J.M.Schneider: Solid State Commun.129 (2004) 589.10.1016/j.ssc.2003.12.008Search in Google Scholar

[20] B.Manoun, R.P.Gulve, S.K.Saxena, S.Gupta, M.W.Barsoum, C.S.Zha: Phys. Rev. B73 (2006) 24110.10.1103/PhysRevB.73.024110Search in Google Scholar

[21] Z.J.Lin, M.J.Zhuo, Y.C.Zhou, M.S.Li, J.Y.Wang: J. Am. Ceram. Soc.89 (2006) 3765.10.1111/j.1551-2916.2006.01303.xSearch in Google Scholar

[22] S.Gupta, D.Filimonov, M.W.Barsoum: J. Am. Ceram. Soc.89 (2006) 2974.Search in Google Scholar

[23] Y.C.Zhou, Z.M.Sun, S.Q.Chen, Y.Zhang: Mater. Res. Innovat.2 (1998) 142.10.1007/s100190050076Search in Google Scholar

[24] J.Emmerlich, D.Music, P.Eklund, O.Wilhelmsson, U.Jansson, J.M.Schneider, H.Högberg, L.Hultman: Acta Mater.55 (2007) 1479.10.1016/j.actamat.2006.10.010Search in Google Scholar

[25] C.Racault, F.Langlais, R.Naslain: J. Mater. Sci.29 (1994) 3384.10.1007/BF00352037Search in Google Scholar

[26] J.P.Palmquist, T.El-Raghy, J.Howing, O.Wilhemsson, M.Sundberg: 30th Intern. Conf. Advanced Ceram. & Composites 2006. Abstract #ICACC-S1-184-2006.Search in Google Scholar

[27] B.Manoun, S.K.Saxena, T.El-Raghy, M.W.Barsoum: Appl. Phys. Lett.88 (2006) 201902.10.1063/1.2202387Search in Google Scholar

[28] Z.J.Lin, M.J.Zhuo, Y.C.Zhou, M.S.Li, J.Y.Wang: J. Mater. Res.21 (2006) 2587.10.1557/jmr.2006.0310Search in Google Scholar

[29] J.C.Schuster, H.Nowotny: Z. Metallkd.71 (1980) 341.Search in Google Scholar

[30] Z.J.Lin, M.J.Zhuo, Y.C.Zhou, M.S.Li, J.Y.Wang: Acta Mater.54 (2006) 1009.10.1016/j.actamat.2005.10.028Search in Google Scholar

[31] T.El-Raghy, M.W.Barsoum: J. Am. Ceram. Soc.82 (1999) 2849.10.1111/j.1151-2916.1999.tb02166.xSearch in Google Scholar

[32] X.H.Wang, Y.C.Zhou: J. Mater. Chem.12 (2002) 455.10.1039/b108685eSearch in Google Scholar

[33] A.G.Zhou, C.A.Wang, Y.Huang: Mater. Sci. Eng. A352 (2003) 333.10.1016/S0921-5093(02)00937-1Search in Google Scholar

[34] Y.Yosida, I.Oguro: Physica C434 (2006) 138.10.1016/j.physc.2005.12.038Search in Google Scholar

[35] H.Wiesenberger, W.Lengauer, P.Ettmayer: Acta Mater.46 (1998) 651.10.1016/S1359-6454(97)00204-8Search in Google Scholar

[36] O.Yu.KhyzhunV.A.Kolyagin: J. Alloys Compd.363 (2004) 32.10.1016/S0925-8388(03)00472-9Search in Google Scholar

[37] J.Zhang, J.Y.Wang, Y.C.Zhou: Acta Mater.55 (2007) 4381.10.1016/j.actamat.2007.03.033Search in Google Scholar

Received: 2007-5-20
Accepted: 2007-10-11
Published Online: 2013-06-11
Published in Print: 2008-01-01

© 2008, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Prof. Dr.-Ing. habil. Dr.-Ing. E. h. Werner Schatt zum 85. Geburtstag
  5. Basic
  6. In-situ reaction synthesis and decomposition of Ta2AlC
  7. A new theoretical equation for temperature dependent self-diffusion coefficients of pure liquid metals
  8. Thermodynamic characterization of liquid alloys with demixing tendency: Bi–Ga
  9. Space charge effects in confined ceramic systems
  10. Solute transport and phase composition in an Al–Mg–Si alloy solidified under conditions of forced flow
  11. Evidence of α → ω phase transition in titanium after high pressure torsion
  12. Thermodynamic properties and elastic constants of Nd–Mg intermetallics: a molecular dynamics study
  13. Microstructure, texture and mechanical properties of the magnesium alloy AZ31 processed by ECAP
  14. Applied
  15. Effect of solidification microstructure and Ca additions on creep strength of magnesium alloy AZ91 processed by Thixomolding
  16. Magnetic hardening mechanism of PrCo5-based ribbons with C addition prepared by melt spinning
  17. Studies on the exchange and dipolar couplings in Nd2Fe14B/α-Fe
  18. Microstructural characteristics and elevated temperature wear of Ti-11Si-16Al alloy
  19. Nickel coating on some organic and carbon fibres by chemical plating
  20. Wear and corrosion properties of nanocrystalline coatings on stainless steel produced by plasma electrolytic nitrocarburizing
  21. The characterisation of microstructural changes in rapidly solidified Al–Fe alloys through measurement of their electrical resistance
  22. Solid inclusion cakes formed during pressure filtration tests of liquid aluminum alloys
  23. Performance of Ni/YSZ cermet cathode prepared by mechanical alloying for high temperature electrolysis of water vapor (steam): effect of anode and cathode thicknesses on the efficiency of hydrogen production
  24. Review
  25. Practical aspects and implications of interfaces in glass-ceramics: a review
  26. Notifications
  27. DGM News
Downloaded on 1.1.2026 from https://www.degruyterbrill.com/document/doi/10.3139/146.101598/html
Scroll to top button