Startseite A study on the criticality of modified neutron transport equation by using alternative scattering phase functions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A study on the criticality of modified neutron transport equation by using alternative scattering phase functions

  • A. Kara und F. Anlı
Veröffentlicht/Copyright: 21. März 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

PN approximation is known as a proper method to solve neutron transport equation when literature is taken into consideration. Generally, conventional scattering function is used to solve criticality and diffusion problems in Legendre polynomial approximation. In this study, instead of conventional scattering function, Henyey-Greenstein (HG) and Anlı-Gungor phase functions (AG) are used in slab geometry transport equation and some critical thicknesses of the slab are calculated as an application with Legendre polynomial (PN) approximation and Marshak boundary condition. Results obtained from HG and AG scattering functions are compared and the correlations and discrepancies between the two functions are presented in the tables.

Kurzfassung

Die PN Approximation ist aus der Literatur als geeignete Methode zur Lösung der Neutronentransportgleichung bekannt. Im Allgemeinen werden konventionelle Streufunktionen zur Lösung von Kritikalitäts- und Diffusionsproblemen bei der Approximation mit Legendre Polynomen verwendet. In dieser Arbeit werden statt konventioneller Streufunktionen, Henyey-Greenstein (HG) und Anlı-Güngör Phasenfunktionen (AG) bei der Lösung der Transportgleichung für Stabgeometrie verwendet. Einige kritische Halbwertsdicken werden berechnet als Anwendung der Approximation mit Legendre Polynomen (PN) unter Marshak Randbedingungen. Die mit den HG und AG Streufunktionen erhaltenen Ergebnisse werden verglichen und Korrelationen und Abweichungen zwischen den beiden Fuintkionen in tabellarischer Form dargestellt.


* E-mail:

References

1 Glasstone, S.; Sesonske, A.: Nuclear Reactor Engineering. Van Nostrand Company, New York, 1967Suche in Google Scholar

2 Bell, G. I.; Glasstone, S.: Nuclear Reactor Theory. VNR Company, New York, 1972Suche in Google Scholar

3 Case, K.; Zweifel, P.: Linear Transport Theory. Reading MA, Addison Wesley, 1967Suche in Google Scholar

4 Davison, B.: Neutron Transport Theory. Oxford University Press, New York, 195810.1063/1.3062414Suche in Google Scholar

5 Kara, A., Anlı, F.: Effects on criticality of selected scattering phase functions in neutron transport equation using the Chebyshev approximation. Kerntechnik78 (2013) 23323710.3139/124.110287Suche in Google Scholar

6 Larsen, E. W.; Pomraning, G. C.: The PN theory as an asymptotic limit of transport theory. Part I: analysis. Nucl. Sci. Eng.109 (1991) 4910.13182/NSE91-A23844Suche in Google Scholar

7 Lee, C. E.; Dias, M. P.: Analytical solutions to the moment transport equations-I; one-group one-region slab and sphere criticality. Ann. Nucl. Energy11 (1984) 51553010.1016/0306-4549(84)90076-8Suche in Google Scholar

8 Brockmann, H.: Treatment of anisotropic scattering in numerical neutron transport theory. Nucl. Sci. Eng.77 (1981) 37741410.13182/NSE81-3Suche in Google Scholar

9 Henyey, L. G., Greenstein, J. L.: Diffuse radiation in the galaxy. Astrophysical Journal, 93 (1941) 7010.1086/144246Suche in Google Scholar

10 Haltrin, V. I.: Exact solution of the characteristic equation for transfer in the anisotropically scattering and absorbing medium, Applied Optics27 (1988) 59910.1364/AO.27.000599Suche in Google Scholar PubMed

11 Haltrin, V. I.: One-parameter two-term Henyey-Greenstein phase function for light scattering in seawater, Applied Optics41 (2002) 102210.1364/AO.41.001022Suche in Google Scholar

12 Yaşa, F., Anlı, F.: A model for calculation of forward isotropic scattering with application to transport equation in slab geometry. Kerntechnik74 (2009) 32010.3139/124.110047Suche in Google Scholar

13 Anlı, F., Güngör, S.: Some useful properties of Legendre polynomials and its applications to neutron transport equation in slab geometry. Applied Mathematical Modelling31 (2007) 72710.1016/j.apm.2005.12.005Suche in Google Scholar

14 Anlı, F., Yaşa, F., Güngör, S.: General eigenvalue spectrum in a one-dimensional slab geometry transport equation. Nuclear science and engineering150 (2005) 7210.13182/NSE05-A2502Suche in Google Scholar

15 Anlı, F., Güngör, S., Yaşa, F., Öztürk, H.: TN approximation to reflected slab and computation of the critical half thickness. J. Quant. Spectrosc. Radiat. Transfer101 (2006) 13514010.1016/j.jqsrt.2005.11.011Suche in Google Scholar

16 Yılmazer, A.: Solution of one-speed neutron transport equation for strongly anisotropic scattering by TN approximation: slab criticality problem. Ann. Nucl.Energy34 (2007) 74375110.1016/j.anucene.2007.03.010Suche in Google Scholar

17 Reynold, L. O., McCormic, N. J.: Approximate two-parameter phase function for light scattering. Journal of the Optical Society of America70 (1980) 1206121210.1364/JOSA.70.001206Suche in Google Scholar

18 Liu, Pingyu: A new phase function approximating to Mie scattering for radiative transport equations. Physics in Medicine and Biology39 (1994) 1025103610.1088/0031-9155/39/6/008Suche in Google Scholar PubMed

Received: 2014-11-28
Published Online: 2015-03-21
Published in Print: 2015-03-17

© 2015, Carl Hanser Verlag, München

Heruntergeladen am 12.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110481/html
Button zum nach oben scrollen