Home Neutronic performance calculations with alternative fluids in a hybrid reactor by using the Monte Carlo method
Article
Licensed
Unlicensed Requires Authentication

Neutronic performance calculations with alternative fluids in a hybrid reactor by using the Monte Carlo method

  • M. Günay
Published/Copyright: March 21, 2015
Become an author with De Gruyter Brill

Abstract

In this study, salt-heavy metal mixtures consisting of 93–85% Li20Sn80 + 5% SFG-PuO2 and 2–10% UO2, 93–85% Li20Sn80 + 5% SFG-PuO2 and 2–10% NpO2, and 93–85% Li20Sn80 + 5% SFG-PuO2 and 2–10% UCO were used as fluids. The fluids were used in the liquid first wall, blanket, and shield zones of a fusion–fission hybrid reactor system. A beryllium (Be) zone with a width of 3 cm was used for neutron multiplicity between the liquid first wall and the blanket. 9Cr2WVTa ferritic steel with the width of 4 cm was used as the structural material. The contributions of each isotope in the fluids to the nuclear parameters, such as tritium breeding ratio (TBR), energy multiplication factor (M), and heat deposition rate, of the fusion–fission hybrid reactor were calculated in the liquid first wall, blanket, and shield zones. Three-dimensional analyses were performed using the Monte Carlo code MCNPX-2.7.0 and nuclear data library ENDF/B-VII.0.

Kurzfassung

In dieser Studie wurden als Liquide Salz-Schwermetallhaltige Lösungen mit 93–85% Li20Sn80 + 5% SFG-PuO2 und 2–10% UO2, 93–85% Li20Sn80 + 5% SFG-PuO2 und 2–10% NpO2, und 93–85% Li20Sn80 + 5% SFG-PuO2 und 2–10% UCO verwendet. Die Liquiden wurden an der ersten Flüssigwand, am Blanket- und Shield-Bereich des hybriden Reaktorsystems eingesetzt. Für die Neutronenanreicherung wurde zwischen der ersten Flüssigwand und dem Blanket ein drei Zentimeter dicker Beryllium-Bereich (Be) angebracht. Als Baumaterial wurde vier Zentimeter dicker 9Cr2WVTa ferritischer Stahl verwendet. In dieser Studie wurde der Einfluss eines jeden Isotops auf nukleare Parameter wie dem Tritium-Erzeugungssatz (TBR) an der ersten Flüssigwand, am Blanket- und Shield-Bereich des Fusion-Fision-Hybridreaktors, dem Energie-Vervielfältigungsfaktor (M) und dem Anteil der gespeicherten Wärme berechnet.

References

1 Şahin, S.; Übeyli, M.: Radiation Damage Studies on The First Wall of a HYLIFE-II Type Fusion Breeder. Energy Conversion and Management46 (2005) 3185 10.1016/j.enconman.2005.03.007Search in Google Scholar

2 Şahin, H. M.: Monte Carlo Calculation of Radiation Damage in First Wall of An Experimental Hybrid Reactor. Annals of Nuclear Energy34 (2007) 86110.1016/j.anucene.2007.04.011Search in Google Scholar

3 Şarer, B.; Günay, M.; et al.: Three-Dimensional Neutronic Calculations For The Fusion Breeder Apex Reactor. Fusion Science and Technology52 (2007) 10710.13182/FST07-A1490Search in Google Scholar

4 Günay, M.; et al.: Three-Dimensional Neutronic Calculations for a Fusion Breeder Apex Reactor Using Some Libraries. Annals of Nuclear Energy38 (2011) 275710.1016/j.anucene.2011.08.007Search in Google Scholar

5 Günay, M.; et al.: Three-dimensional Monte Carlo Calculation of Gas Production in Structural Material of APEX Reactor for Some Evaluated Data Files. Annals of Nuclear Energy55 (2013) 29210.1016/j.anucene.2013.01.001Search in Google Scholar

6 Günay, M.; et al.: The Effect on Radiation Damage of Structural Material in a Hybrid System By Using a Monte Carlo Radiation Transport Code. Annals of Nuclear Energy63 (2013) 15710.1016/j.anucene.2013.07.038Search in Google Scholar

7 Christofilos, N. C.: Design for A High Power-Density Astron Reactor. Journal of Fusion Energy8 (1989) 9710.1007/BF01050784Search in Google Scholar

8 Moir, R. W.: Liquid First Walls For Magnetic Fusion Energy Configurations. Nuclear Fusion37 (1997) 55710.1088/0029-5515/37/4/I13Search in Google Scholar

9 Abdou, M. A.; et al.: Chapter 1: Overview. APEX Interim Report, 1999Search in Google Scholar

10 Abdou, M. A.; et al.: On The Exploration of Innovative Concepts for Fusion Chamber Technology. Fusion Engineering and Design54 (2001) 18110.1016/S0920-3796(00)00433-6Search in Google Scholar

11 Abdou, M. A.: Preface. Fusion Engineering and Design72 (2004) 110.1016/j.fusengdes.2004.10.001Search in Google Scholar

12 Abdou, M. A.; et al.: Overview of Fusion Blanket R&D in the US over the last Decade. Nuclear Engineering and Technology37 (5) (2005) 401Search in Google Scholar

13 Abdou, M. A.: Research On Liquid Walls for Fusion Systems. Appl. Electromag. Mech.9 (2001) 151Search in Google Scholar

14 Ying, A.; et al.: Chapter 5: Thick Liquid Blanket Concept, APEX Interim Report, 1999Search in Google Scholar

15 Youssef, M. Z.; Abdou, M. A.: Heat Deposition, Damage and Tritium Breeding Characteristics in Thick Liquid Wall Blanket Concepts. Fusion Engineering and Design49 (2000) 71910.1016/S0920-3796(00)00179-4Search in Google Scholar

16 Youssef, M. Z.; et al.: The Breeding Potential of “Flinabe” and Comparison to “Flibe” in “CLiFF” High Power Density Concept. Fusion Engineering and Design61 (2002) 49710.1016/S0920-3796(02)00245-4Search in Google Scholar

17 IAEA: International Atomic Energy Agency IAEA-TECDOC-1349,2003Search in Google Scholar

18 Piera, M.; et al.: Hybrid Reactors: Nuclear Breeding or Energy Production. Energy Conversion and Management51 (2010) 175810.1016/j.enconman.2010.01.025Search in Google Scholar

19 Şarer, B.; et al.: Calculations of Neutron-Induced Production Cross-Sections of 180,182,183,184,186W up to 20 MeV. Annals of Nuclear Energy36 (2009) 41710.1016/j.anucene.2008.11.025Search in Google Scholar

20 Günay, M.: Investigation of radiation damage in structural material of APEX reactor by using Monte Carlo method. Annals of Nuclear Energy53 (2013) 5910.1016/j.anucene.2012.06.038Search in Google Scholar

21 Günay, M.; Kasap, H.: Neutronic Investigation of the Application of certain Plutonium-Mixed Fluids in a Fusion-Fission Hybrid Reactor. Annals of Nuclear Energy63 (2014) 43210.1016/j.anucene.2013.08.024Search in Google Scholar

22 Chadwick, M. B.; et al.: ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology. Nuclear Data Sheets, 107 (2006) 293110.1016/j.nds.2006.11.001Search in Google Scholar

23 Pelowitz, D. B.: MCNPX User's Manual, Version 2.7.0, LA-CP-11-00438, 2011Search in Google Scholar

24 Şarer, B.; et al.: Comparisons of The Calculations Using Different Codes Implemented in MCNPX Monte Carlo Transport Code for Accelerator Driven System Target. Fusion Science Technology61 (2012) 30210.13182/FST12-A13437Search in Google Scholar

25 Sawan, M. E.; Abdou, M. A.: Physics and Technology Conditions for Attaining Tritium Self-Sufficiency for the DT Fuel Cycle. Fusion Engineering and Design81 (2006) 113110.1016/j.fusengdes.2005.07.035Search in Google Scholar

26 Jung, J.; Abdou, M. A.: Assessments of Tritium Breeding Requirements and Breeding Potential for the Starfire/Demo Design. Nuclear Technology/Fusion4 (1983) 361Search in Google Scholar

27 Youssef, M. Z.; Morley, N.; El-Azabet, A.: X-rays Surface and Volumetric Heat Deposition and Tritium Breeding Issues In Liquid-Protected FW In High Power Density Devices. Paper presented at the 13th Topical Meeting on the Technology of Fusion Power. Nashville, Tennessee, June 7–11 (1998)Search in Google Scholar

28 Abdou, M. A.; et al.: Deuterium-Tritium Fuel Self-Sufficiency in Fusion Reactors. Fusion Technology9 (1986) 25010.13182/FST86-A24715Search in Google Scholar

29 Kuan, W.; Abdou, M. A.: A New Approach for Assessing The Required Tritium Breeding Ratio and Startup Inventory in Future Fusion Reactors. Fusion Technology35 (1999) 30910.13182/FST99-A84Search in Google Scholar

30 Youssef, M. Z.; Abdou, M. A.: Uncertainties in Prediction of Tritium Breeding in Candidate Blanket Designs Due to Present Uncertainties in Nuclear Data Base. Fusion Technology9 (1986) 28610.13182/FST86-A24716Search in Google Scholar

31 Şahin, S.; Übeyli, M.: Modified APEX Reactor as A Fusion Breeder. Energy Conversion and Management45 (2004) 149710.1016/j.enconman.2003.09.014Search in Google Scholar

32 Dhaba'an, A. H.; Beynon, T. D.: Three-Dimensional Analyses of Candidate Blanket Designs for the Compact Tokamak Reactor Concept. Progress in Nuclear Energy29 (1995) 110.1016/0149-1970(94)00013-VSearch in Google Scholar

Received: 2014-11-20
Published Online: 2015-03-21
Published in Print: 2015-03-17

© 2015, Carl Hanser Verlag, München

Downloaded on 13.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110479/html
Scroll to top button