Home Production cross–section calculations of medical 32P, 117Sn, 153Sm and 186,188Re radionuclides used in bone pain palliation treatment
Article
Licensed
Unlicensed Requires Authentication

Production cross–section calculations of medical 32P, 117Sn, 153Sm and 186,188Re radionuclides used in bone pain palliation treatment

  • B. Demir , A. Kaplan , V. Çapalı , İ. H. Sarpün , A. Aydın and E. Tel
Published/Copyright: March 21, 2015
Become an author with De Gruyter Brill

Abstract

In this study, production cross–section calculations of 32P, 117Sn, 153Sm and 186,188Re radionuclides used in bone pain palliation treatment produced by 30Si(d,γ)32P, 118Sn(γ,n)117Sn, 116Sn(n,γ)117Sn, 150Nd(α,n)153Sm, 154Sm(n,2n)153Sm, 152Sm(n,γ)153Sm, 186W(d,2n)186Re, 187Re(γ,n)186Re, 185Re(n,γ)186Re and 187Re(n,γ)188Re reactions have been investigated in the different incident energy range of 0.003–34 MeV. Two-component exciton and generalised superfluid models of the TALYS 1.6 and exciton and generalised superfluid models of the EMPIRE 3.1 computer codes have been used to pre-equilibrium (PEQ) reaction calculations. The calculated production cross–section results have been compared with available experimental results existing in the experimental nuclear reaction database (EXFOR). Except the 118Sn(γ,n)117Sn, 150Nd(α,n)153Sm and 185Re(n,γ)186Re reactions, the two-component exciton model calculations of TALYS 1.6 code exhibit generally good agreement with the experimental measurements for all reactions used in this present study.

Kurzfassung

In dieser Studie wurden die Produktionsquerschnittsberechnungen der zur Palliativbehandlung von Knochenschmerzen verwendeten Radionuklide 32P, 117Sn, 153Sm, erzeugt durch 186,188Re durch 30Si(d,γ)32P, 118Sn(γ,n)117Sn, 116Sn(n,γ)117Sn, 150Nd(α,n)153Sm, 154Sm(n,2n)153Sm, 152Sm(n,γ)153Sm, 186W(d,2n)186Re, 187Re(γ,n)186Re, 185Re(n,γ)186Re und 187Re(n,γ)188Re Reaktionen, in verschiedenen Energiebereichen von 0.003–34 MeV untersucht. Zwei-Komponenten Exzitonen- und generalisierte Supraflüssigkeitsmodelle des TALYS 1.6 Codes und Exzitonen- und generalisierte Supraflüssigkeitsmodelle des EMPIRE 3.1 Codes wurden für die Berechnung der Pre-Equilibrium (PEQ) Reaktionen verwendet. Die berechneten Produktionsquerschnitte wurden mit Ergebnissen aus der experimentellen Kernreaktionsdatenbank EXFOR verglichen. Bis auf die 118Sn(γ,n)117Sn, 150Nd(α,n)153Sm und 185Re(n,γ)186Re Reaktionen, zeigen die Berechnungen mit dem Zwei-Komponenten Exzitonenmodell des TALYS 1.6 Codes gute Übereinstimmung mit den experimentellen Messergebnissen für alle in dieser Studie angesprochenen Reaktionen.


* E-mail:

References

1 Coleman, R. E.: Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat. Rev.27 (2001) 16517610.1053/ctrv.2000.0210Search in Google Scholar PubMed

2 Liepe, K.; Kotzerke, J.: Internal radiotherapy of painful bone metastases. Methods55 (3) (2011) 25827010.1016/j.ymeth.2011.07.001Search in Google Scholar PubMed

3 Paes, F. M.; Serafini, A. N.: Systemic metabolic radiopharmaceutical therapy in the treatment of metastatic bone pain. Semin. Nucl. Med.40 (2) (2010) 8910410.1053/j.semnuclmed.2009.10.003Search in Google Scholar PubMed

4 IAEA-TECDOC-1549, Criteria for Palliation of Bone Metastases – Clinical Applications, International Atomic Energy Agency, Vienna, Austria (2007)Search in Google Scholar

5 Beyer, G. J.: The potential of accelerators. XXXV European Cyclotron Progress Meeting, Nice (France), November 1–4 (2006)Search in Google Scholar

6 Aydin, E. G.; Tel, E.; KaplanA.; AydinA.: New calculations of excitation functions of some positron emitting and single photon emitting radioisotopes. Kerntechnik73, (4) (2008) 18418910.3139/124.100563Search in Google Scholar

7 Qaim, S. M.: Nuclear data relevant to the production and application of diagnostic radionuclides. Radiochim. Acta89 (2001) 22323210.1524/ract.2001.89.4-5.223Search in Google Scholar

8 Kaplan, A.; Tel, E.; Aydın, E. G.; Aydın, A.; Yılmaz, M.: Spallation neutron emission spectra in medium and heavy target nuclei by a proton beam up to 140 MeV energy. Appl. Radiat. Isotopes67(4) (2009) 57057610.1016/j.apradiso.2008.12.014Search in Google Scholar PubMed

9 Aydin, A.; Tel, E.; Pekdoğan, H.; Kaplan, A.: Nuclear model calculations on the production of 125,123Xe and 133,131,129,128Ba radioisotopes. Phys. Atom. Nucl.75(3) (2012) 31031410.1134/S1063778812030039Search in Google Scholar

10 Tel, E.; Aydin, A.; Kara, A.; Kaplan, A.: Investigation of ground state features for some medical radionuclides using an effective nuclear force. Kerntechnik77(1) (2012) 5055Search in Google Scholar

11 Tel, E.; Ugur, F. A.; Gokce, A. A.: Alpha induced reaction cross section calculations of tantalum nucleus. J. Fusion Energ.32(2) (2013) 30431010.1007/s10894-012-9550-4Search in Google Scholar

12 Kaplan, A.; Özdoğan, H.; Aydın, A.; Tel, E.: (γ,2n) reaction cross section calculations on several structural fusion materials. J. Fusion Energ.32(4) (2013) 43143610.1007/s10894-012-9590-9Search in Google Scholar

13 Aytekin, H.; Artun, O.; Baldık, R.: Cross-section calculations of proton induced (p,n) and (p,2n) reactions for production of diagnostic 67Ga, 81Rb, 111In, 123,124I, 123Cs and 123Xe radioisotopes. J. Radioanal. Nucl. Chem.298(1) (2013) 9510310.1007/s10967-013-2478-ySearch in Google Scholar

14 Kaplan, A.; Çapalı, V.: Cross section calculations on several structural fusion materials for (γ,3n) reactions in the photon energy range of 20–110 MeV. J. Fusion Energ.33(3) (2014) 29930310.1007/s10894-014-9670-0Search in Google Scholar

15 Koning, A.; Hilaire, S.; Goriely, S.: TALYS-1.6 A Nuclear Reaction Program, User Manual (NRG, The Netherlands), First Edition: December 23, (2013)Search in Google Scholar

16 Herman, M.; Capote, R.; Carlson, B. V.; Obložinský, P.; Sin, M.; Trkov, A.; Wienke, H.; Zerkin, V.: EMPIRE: Nuclear reaction model code system for data evaluation. Nucl. Data Sheets108(12) (2007) 2655271510.1016/j.nds.2007.11.003Search in Google Scholar

17 Herman, M.; Capote, R.; Sin, M.; Trkov, A.; Carlson, B. V.; Obložinský, P.; Mattoon, C. M.; Wienke, H.; Hoblit, S.; Cho, Y. S.; Plujko, V.; Zerkin, V.: EMPIRE-3.1 Rivoli modular system for nuclear reaction calculations and nuclear data evaluation. User's Manual (2012)10.2172/1108585Search in Google Scholar

18 Brookhaven National Laboratory, National Nuclear Data Center, EXFOR/CSISRS (Experimental Nuclear Reaction Data File). Database Version of August 20, 2014 (http://www.nndc.bnl.gov/exfor/) (2014)Search in Google Scholar

19 Crasta, R.; Naik, H.; Suryanarayana, S. V.; Prajapati, P. M.; Jagadisan, K. C.; Thakare, S. V.; Ganesh, S.; Nimje, V. T.; Mittal, K. C.; Goswami, A.: Photo-neutron cross-section of 100Mo. J. Radioanal Nucl. Chem.290(2) (2011) 36737310.1007/s10967-011-1247-zSearch in Google Scholar

20 Kopecky, J.; Uhl, M.: Test of gamma-ray strength functions in nuclear reaction model calculations. Phys. Rev. C41(5) (1990) 1941195510.1103/PhysRevC.41.1941Search in Google Scholar PubMed

21 Ericson, T.: The statistical model and nuclear level densities. Adv. Phys.9(36) (1960) 42551110.1080/00018736000101239Search in Google Scholar

22 Koning, A. J.; Duijvestijn, M. C.: A global pre-equilibrium analysis from 7 to 200 MeV based on the optical model potential. Nucl. Phys. A744 (2004) 157610.1016/j.nuclphysa.2004.08.013Search in Google Scholar

23 Kalbach, C.: Two-component exciton model: Basic formalism away from shell closures. Phys. Rev. C33 (1986) 81883310.1103/PhysRevC.33.818Search in Google Scholar

24 Koning, A. J.; Hilaire, S.; Duijvestijn, M. C.: TALYS: Comprehensive Nuclear Reaction Modeling. In: Haight, R. C.; Chadwick, M. B.; Kawano, T.; TalouP. (eds.): Proceedings of the International Conference on Nuclear Data for Science and Technology-ND 2004, AIP vol 769. Santa Fe, USA, (2005) 11541159Search in Google Scholar

25 Ignatyuk, A. V.; Istekov, K. K.; Smirenkin, G. N.: Role of collective effects in the systematics of nuclear level densities. Sov. J. Nucl. Phys.29 (1979) 450454Search in Google Scholar

26 Ignatyuk, A. V.; Weil, J. L.; RamanS.; Kahane, S.: Density of discrete levels in 116Sn. Phys. Rev. C47(4) (1993) 1504151310.1103/PhysRevC.47.1504Search in Google Scholar PubMed

27 Griffin, J. J.: Statistical model of intermediate structure. Phys. Rev. Lett.17 (1966) 47848110.1103/PhysRevLett.17.478Search in Google Scholar

28 Cline, C. K.; Blann, M.: The pre-equilibrium statistical model: Description of the nuclear equilibration process and parameterization of the model. Nucl. Phys. A172 (1971) 22525910.1016/0375-9474(71)90713-5Search in Google Scholar

29 Cline, C. K.: Extensions to the pre-equilibrium statistical model and a study of complex particle emission. Nucl. Phys. A193 (1972) 41743710.1016/0375-9474(72)90330-2Search in Google Scholar

30 Ribanský, I.; Obložinský, P.; Běták, E.: Pre-equilibrium decay and the exciton model. Nucl. Phys. A205 (1973) 54556010.1016/0375-9474(73)90705-7Search in Google Scholar

Received: 2014-10-27
Published Online: 2015-03-21
Published in Print: 2015-03-17

© 2015, Carl Hanser Verlag, München

Downloaded on 13.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110477/html
Scroll to top button