Startseite Production cross–section calculations of medical 32P, 117Sn, 153Sm and 186,188Re radionuclides used in bone pain palliation treatment
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Production cross–section calculations of medical 32P, 117Sn, 153Sm and 186,188Re radionuclides used in bone pain palliation treatment

  • B. Demir , A. Kaplan , V. Çapalı , İ. H. Sarpün , A. Aydın und E. Tel
Veröffentlicht/Copyright: 21. März 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, production cross–section calculations of 32P, 117Sn, 153Sm and 186,188Re radionuclides used in bone pain palliation treatment produced by 30Si(d,γ)32P, 118Sn(γ,n)117Sn, 116Sn(n,γ)117Sn, 150Nd(α,n)153Sm, 154Sm(n,2n)153Sm, 152Sm(n,γ)153Sm, 186W(d,2n)186Re, 187Re(γ,n)186Re, 185Re(n,γ)186Re and 187Re(n,γ)188Re reactions have been investigated in the different incident energy range of 0.003–34 MeV. Two-component exciton and generalised superfluid models of the TALYS 1.6 and exciton and generalised superfluid models of the EMPIRE 3.1 computer codes have been used to pre-equilibrium (PEQ) reaction calculations. The calculated production cross–section results have been compared with available experimental results existing in the experimental nuclear reaction database (EXFOR). Except the 118Sn(γ,n)117Sn, 150Nd(α,n)153Sm and 185Re(n,γ)186Re reactions, the two-component exciton model calculations of TALYS 1.6 code exhibit generally good agreement with the experimental measurements for all reactions used in this present study.

Kurzfassung

In dieser Studie wurden die Produktionsquerschnittsberechnungen der zur Palliativbehandlung von Knochenschmerzen verwendeten Radionuklide 32P, 117Sn, 153Sm, erzeugt durch 186,188Re durch 30Si(d,γ)32P, 118Sn(γ,n)117Sn, 116Sn(n,γ)117Sn, 150Nd(α,n)153Sm, 154Sm(n,2n)153Sm, 152Sm(n,γ)153Sm, 186W(d,2n)186Re, 187Re(γ,n)186Re, 185Re(n,γ)186Re und 187Re(n,γ)188Re Reaktionen, in verschiedenen Energiebereichen von 0.003–34 MeV untersucht. Zwei-Komponenten Exzitonen- und generalisierte Supraflüssigkeitsmodelle des TALYS 1.6 Codes und Exzitonen- und generalisierte Supraflüssigkeitsmodelle des EMPIRE 3.1 Codes wurden für die Berechnung der Pre-Equilibrium (PEQ) Reaktionen verwendet. Die berechneten Produktionsquerschnitte wurden mit Ergebnissen aus der experimentellen Kernreaktionsdatenbank EXFOR verglichen. Bis auf die 118Sn(γ,n)117Sn, 150Nd(α,n)153Sm und 185Re(n,γ)186Re Reaktionen, zeigen die Berechnungen mit dem Zwei-Komponenten Exzitonenmodell des TALYS 1.6 Codes gute Übereinstimmung mit den experimentellen Messergebnissen für alle in dieser Studie angesprochenen Reaktionen.


* E-mail:

References

1 Coleman, R. E.: Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat. Rev.27 (2001) 16517610.1053/ctrv.2000.0210Suche in Google Scholar PubMed

2 Liepe, K.; Kotzerke, J.: Internal radiotherapy of painful bone metastases. Methods55 (3) (2011) 25827010.1016/j.ymeth.2011.07.001Suche in Google Scholar PubMed

3 Paes, F. M.; Serafini, A. N.: Systemic metabolic radiopharmaceutical therapy in the treatment of metastatic bone pain. Semin. Nucl. Med.40 (2) (2010) 8910410.1053/j.semnuclmed.2009.10.003Suche in Google Scholar PubMed

4 IAEA-TECDOC-1549, Criteria for Palliation of Bone Metastases – Clinical Applications, International Atomic Energy Agency, Vienna, Austria (2007)Suche in Google Scholar

5 Beyer, G. J.: The potential of accelerators. XXXV European Cyclotron Progress Meeting, Nice (France), November 1–4 (2006)Suche in Google Scholar

6 Aydin, E. G.; Tel, E.; KaplanA.; AydinA.: New calculations of excitation functions of some positron emitting and single photon emitting radioisotopes. Kerntechnik73, (4) (2008) 18418910.3139/124.100563Suche in Google Scholar

7 Qaim, S. M.: Nuclear data relevant to the production and application of diagnostic radionuclides. Radiochim. Acta89 (2001) 22323210.1524/ract.2001.89.4-5.223Suche in Google Scholar

8 Kaplan, A.; Tel, E.; Aydın, E. G.; Aydın, A.; Yılmaz, M.: Spallation neutron emission spectra in medium and heavy target nuclei by a proton beam up to 140 MeV energy. Appl. Radiat. Isotopes67(4) (2009) 57057610.1016/j.apradiso.2008.12.014Suche in Google Scholar PubMed

9 Aydin, A.; Tel, E.; Pekdoğan, H.; Kaplan, A.: Nuclear model calculations on the production of 125,123Xe and 133,131,129,128Ba radioisotopes. Phys. Atom. Nucl.75(3) (2012) 31031410.1134/S1063778812030039Suche in Google Scholar

10 Tel, E.; Aydin, A.; Kara, A.; Kaplan, A.: Investigation of ground state features for some medical radionuclides using an effective nuclear force. Kerntechnik77(1) (2012) 5055Suche in Google Scholar

11 Tel, E.; Ugur, F. A.; Gokce, A. A.: Alpha induced reaction cross section calculations of tantalum nucleus. J. Fusion Energ.32(2) (2013) 30431010.1007/s10894-012-9550-4Suche in Google Scholar

12 Kaplan, A.; Özdoğan, H.; Aydın, A.; Tel, E.: (γ,2n) reaction cross section calculations on several structural fusion materials. J. Fusion Energ.32(4) (2013) 43143610.1007/s10894-012-9590-9Suche in Google Scholar

13 Aytekin, H.; Artun, O.; Baldık, R.: Cross-section calculations of proton induced (p,n) and (p,2n) reactions for production of diagnostic 67Ga, 81Rb, 111In, 123,124I, 123Cs and 123Xe radioisotopes. J. Radioanal. Nucl. Chem.298(1) (2013) 9510310.1007/s10967-013-2478-ySuche in Google Scholar

14 Kaplan, A.; Çapalı, V.: Cross section calculations on several structural fusion materials for (γ,3n) reactions in the photon energy range of 20–110 MeV. J. Fusion Energ.33(3) (2014) 29930310.1007/s10894-014-9670-0Suche in Google Scholar

15 Koning, A.; Hilaire, S.; Goriely, S.: TALYS-1.6 A Nuclear Reaction Program, User Manual (NRG, The Netherlands), First Edition: December 23, (2013)Suche in Google Scholar

16 Herman, M.; Capote, R.; Carlson, B. V.; Obložinský, P.; Sin, M.; Trkov, A.; Wienke, H.; Zerkin, V.: EMPIRE: Nuclear reaction model code system for data evaluation. Nucl. Data Sheets108(12) (2007) 2655271510.1016/j.nds.2007.11.003Suche in Google Scholar

17 Herman, M.; Capote, R.; Sin, M.; Trkov, A.; Carlson, B. V.; Obložinský, P.; Mattoon, C. M.; Wienke, H.; Hoblit, S.; Cho, Y. S.; Plujko, V.; Zerkin, V.: EMPIRE-3.1 Rivoli modular system for nuclear reaction calculations and nuclear data evaluation. User's Manual (2012)10.2172/1108585Suche in Google Scholar

18 Brookhaven National Laboratory, National Nuclear Data Center, EXFOR/CSISRS (Experimental Nuclear Reaction Data File). Database Version of August 20, 2014 (http://www.nndc.bnl.gov/exfor/) (2014)Suche in Google Scholar

19 Crasta, R.; Naik, H.; Suryanarayana, S. V.; Prajapati, P. M.; Jagadisan, K. C.; Thakare, S. V.; Ganesh, S.; Nimje, V. T.; Mittal, K. C.; Goswami, A.: Photo-neutron cross-section of 100Mo. J. Radioanal Nucl. Chem.290(2) (2011) 36737310.1007/s10967-011-1247-zSuche in Google Scholar

20 Kopecky, J.; Uhl, M.: Test of gamma-ray strength functions in nuclear reaction model calculations. Phys. Rev. C41(5) (1990) 1941195510.1103/PhysRevC.41.1941Suche in Google Scholar PubMed

21 Ericson, T.: The statistical model and nuclear level densities. Adv. Phys.9(36) (1960) 42551110.1080/00018736000101239Suche in Google Scholar

22 Koning, A. J.; Duijvestijn, M. C.: A global pre-equilibrium analysis from 7 to 200 MeV based on the optical model potential. Nucl. Phys. A744 (2004) 157610.1016/j.nuclphysa.2004.08.013Suche in Google Scholar

23 Kalbach, C.: Two-component exciton model: Basic formalism away from shell closures. Phys. Rev. C33 (1986) 81883310.1103/PhysRevC.33.818Suche in Google Scholar

24 Koning, A. J.; Hilaire, S.; Duijvestijn, M. C.: TALYS: Comprehensive Nuclear Reaction Modeling. In: Haight, R. C.; Chadwick, M. B.; Kawano, T.; TalouP. (eds.): Proceedings of the International Conference on Nuclear Data for Science and Technology-ND 2004, AIP vol 769. Santa Fe, USA, (2005) 11541159Suche in Google Scholar

25 Ignatyuk, A. V.; Istekov, K. K.; Smirenkin, G. N.: Role of collective effects in the systematics of nuclear level densities. Sov. J. Nucl. Phys.29 (1979) 450454Suche in Google Scholar

26 Ignatyuk, A. V.; Weil, J. L.; RamanS.; Kahane, S.: Density of discrete levels in 116Sn. Phys. Rev. C47(4) (1993) 1504151310.1103/PhysRevC.47.1504Suche in Google Scholar PubMed

27 Griffin, J. J.: Statistical model of intermediate structure. Phys. Rev. Lett.17 (1966) 47848110.1103/PhysRevLett.17.478Suche in Google Scholar

28 Cline, C. K.; Blann, M.: The pre-equilibrium statistical model: Description of the nuclear equilibration process and parameterization of the model. Nucl. Phys. A172 (1971) 22525910.1016/0375-9474(71)90713-5Suche in Google Scholar

29 Cline, C. K.: Extensions to the pre-equilibrium statistical model and a study of complex particle emission. Nucl. Phys. A193 (1972) 41743710.1016/0375-9474(72)90330-2Suche in Google Scholar

30 Ribanský, I.; Obložinský, P.; Běták, E.: Pre-equilibrium decay and the exciton model. Nucl. Phys. A205 (1973) 54556010.1016/0375-9474(73)90705-7Suche in Google Scholar

Received: 2014-10-27
Published Online: 2015-03-21
Published in Print: 2015-03-17

© 2015, Carl Hanser Verlag, München

Heruntergeladen am 13.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110477/html
Button zum nach oben scrollen