Startseite Chebyshev polynomial (TN) approximation to neutron transport theory and application to the critical slab problem
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Chebyshev polynomial (TN) approximation to neutron transport theory and application to the critical slab problem

  • A. Bülbül und F. Anlı
Veröffentlicht/Copyright: 5. April 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The critical slab problem has been studied in the one-speed neutron transport equation with isotropic scattering by using the first kind of Chebyshev Polynomials. The moment criticality solutions were obtained for the uniform finite slab using Mark and Marshak type vacuum boundary conditions. The results obtained by this approximation are presented in tables which also include the results obtained by the PN method for comparison.

Kurzfassung

Das Kritikalitätsproblem in ebener Geometrie wurde untersucht in der Eingruppen-Neutronentransportgleichung mit isotroper Streuung mit Hilfe von Tschebyscheff-Polynomen erster Ordnung. Die Kritikalitätslösungen für gleichförmige finite Platten wurden mit Hilfe der Vakuum-Randbedingungen vom Typ Mark and Marshak erhalten. Die mit dieser Approximation erhaltenen Ergebnisse werden in Tabellenform vorgestellt. Die Tabellen zeigen zum Vergleich auch Ergebnisse, die mit der PN Methode erhalten wurden.

References

1 Mark, C.: Chalk River Reports. CRT-338 and CRT-340 (1957)Suche in Google Scholar

2 Davison, B.: Neutron Transport Theory. New York: Oxford, Chap.10 et seq. (1957)Suche in Google Scholar

3 Conkie, W. R.: An Iterative Method in Neutron Transport Theory. Nucl. Sci. Eng.6 (1959) 267Suche in Google Scholar

4 Conkie, W. R.: Polynomial Approximations in Neutron Transport Theory. Nucl. Scie. Eng.6 (1959) 260Suche in Google Scholar

5 Aspelund, O.: On a New Method for Solving the (Boltzmann) Equation in Neutron Transport Theory. PICG16 (1959) 530Suche in Google Scholar

6 Yabushita, S.: Tschebyscheff Polynomial Approximation Method of the Neutron-Transport Equation. Journal of Math. Physics2 (1961) 543Suche in Google Scholar

7 Anlı, F.; Yasa, F.; Güngör, S.; Öztürk, H.: TN approximation to neutron transport equation and application to critical slab problem. J. Quant. Spectroscopy Radiat. Transfer101 (2006) 129Suche in Google Scholar

8 Anlı, F.; Yasa, F.; Güngör, S.; Öztürk, H.: TN approximation to reflected slab and computation of the critical half thickness. J. Quant. Spectroscopy Radiation Transfer101 (2006) 135Suche in Google Scholar

9 Yılmazer, A.: Spectral PN approximation(s) to the transport problems in spherical media. J. Quant. Spectroscopy Radiation Transfer108 (2007) 403Suche in Google Scholar

10 Yılmazer, A.: Solution of one-speed neutron transport equation for strongly anisotropic scattering by TN approximation: Slab criticality problem. J. Quant. Spectroscopy Radiation Transfer34 (2007) 743Suche in Google Scholar

11 Sanchez, R.; McCormick, N. J.: Nucl. Sci. Eng.80 (1982) 481Suche in Google Scholar

12 Lee, C. E.; Dias, M. P.: Analytical Solutions to the Moment Transport Equations. Ann. Nucl. Energy11 (1984) 51510.1016/0306-4549(84)90076-8Suche in Google Scholar

Received: 2008-2-6
Published Online: 2013-04-05
Published in Print: 2008-09-01

© 2008, Carl Hanser Verlag, München

Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.100559/html
Button zum nach oben scrollen