Review on nanostructures from catalytic pyrolysis of gas and liquid carbon sources
-
Eldar B. Zeynalov
, Joerg F. Friedrich , Dilgam B. Tagiyev , Asgar B. Huseynov , Matanat Ya. Magerramova und Narmin A. Abdurehmanova
Abstract
Numerous scientific reports devoted to the synthesis of carbon nanostructures (CNS) are published as a way of searching for industrially feasible processes. Researchers try to find efficient and at the same time cheap, affordable and easy-to-use sources of carbon, catalysts and methods of carbon nanotubes production. The present review article highlights research on the synthesis of CNS from gas and liquid feedstock which appears to be the most amenable for large-scale production. Carbon sources, types of catalysts used as well as methods for production of various carbon nanostructures are sequentially described.
Kurzfassung
Zahlreiche wissenschaftliche Publikationen sind der Synthese von Kohlenstoff-Nanostrukturen (CNS) unter dem Aspekt industrieller Herstellung gewidmet. Ausschau wurde nach Wegen zur effizienten katalytischen Produktion von Kohlenstoff-Nanoröhren gehalten, deren Synthese billige und leicht zugängliche Kohlenwasserstoffquellen und Katalysatorsysteme nutzt. Dieser Übersichtsartikel beschreibt einige Verfahren der CNS-Synthese, die flüssige und gasförmige Kohlenwasserstoffquellen nutzen und gleichzeitig zur Hochskalierung in industrielle Maßstäbe geeignet sind. Insbesondere die Kohlenwasserstoffquellen, die Katalysatorsysteme und die damit erhaltenen Kohlenstoff-Nanostrukturen werden im Einzelnen beschrieben.
References
1 F.Taleshi, A. A.Hosseini, M.Mohammadi, M.Pashaee: Effect of hydrocarbon gas on synthesis and diameter of carbon nanotubes, Indian Journal of Physics87 (2013), No. 9, pp. 873–87710.1007/s12648-013-0319-zSuche in Google Scholar
2 A.Nepal, G. P.Singh, B. N.Flanders, C. M.Sorensen: One-step synthesis of graphene via catalyst-free gas-phase hydrocarbon detonation, Nanotechnology24 (2013), No. 245602, pp. 1–710.1088/0957-4484/24/24/245602Suche in Google Scholar PubMed
3 K. T.Chaudhary, Z. H.Rizvi, K. A.Bhatti, J.Ali, P. P.Yupapin: Multiwalled carbon nanotube synthesis using arc discharge with hydrocarbon as feedstock, Journal of Nanomaterials2013 (2013), No. 105145, pp. 1–1410.1155/2013/105145Suche in Google Scholar
4 F.Gümüş, N.Yuca, N.Karatepe: Carbon nanotube synthesis with different support materials and catalysts, D.Pribat, Y. HeeLee, M.Razeghi, S.Baik (Eds.): Carbon Nanotubes, Graphene, and Associated Devices VI, The International Society for Optical Engineering, Bellingham, WA, United States (2013) 10.1117/12.2023967Suche in Google Scholar
5 D.Fejes, Z. P.Popović, M.Raffai, Z.Balogh, M.Damnjanović, I.Milošević, K.Hernadi: Synthesis, model and stability of helically coiled carbon nanotubes, Electrochemical and Solid State Letters2 (2013), No. 3, pp. M21–M2310.1149/2.003303sslSuche in Google Scholar
6 J. K.Kasi, A. K.Kasi, M.Bokhari, N.Afzulpurkar: Synthesis of Unique Structures of Carbon Nanotube at Anodic Aluminum Oxide Template, Applied Mechanics and Materials421 (2013), No. 2–3, pp. 319–32310.1007/s11434-011-4892-2Suche in Google Scholar
7 M. C.Altay, S.Eroglu: Growth of multi-walled C nanotubes from pre-heated CH4 using Fe3O4 as a catalyst precursor, Diamond and Related Materials31 (2013), pp. 19–2410.1016/j.diamond.2012.10.009Suche in Google Scholar
8 E.Dervishi, A. R.Biris, F.Watanabe, J. L.Umwungeri, T.Mustafa, J. A.Driver, A. S.Biris: Few-layer nano-graphene structures with large surface areas synthesized on a multifunctional Fe: Mo: MgO catalyst system, Journal of Materials Science47 (2012), No. 4, pp. 1910–191910.1007/s10853-011-5980-zSuche in Google Scholar
9 M. C.Altay, S.Eroglu: Synthesis of multi-walled C nanotubes by Fe–Ni (70 wt.%) catalyzed chemical vapor deposition from pre-heated CH4, Materials Letters67 (2012), No. 1, pp. 124–12710.1016/j.matlet.2011.09.011Suche in Google Scholar
10 T.Odedairo, JunMa, YiGu, J.Chen, X. S.Zhao, Z.Zhu: One-pot synthesis of carbon nanotube–graphene hybrids via syngas production, Journal of Materials ChemistryA2 (2014), No. 5, pp. 1418–142810.1039/C3TA13871BSuche in Google Scholar
11 B.Toboonsung, P.Singjai: Growth of CNTs using liquefied petroleum gas as carbon source by chemical vapor deposition method, Advanced Materials Research770 (2013), pp. 116–11910.4028/www.scientific.net/AMR.770.116Suche in Google Scholar
12 A. M.Lazarini, Y. M.Kuwabara, V. S.Reséndiz, M. O.López, J. S.Salazar, R. G.Arias, Synthesis and characterization of few layers graphene films for potential applications in electronics: 12th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), IEEE, Mexico, City. Mexico (2015), pp. 1–610.1109/ICEEE.2015.7357929Suche in Google Scholar
13 E.Kostakova, J.Gregr, L.Meszaros, M.Chotebor, Z. K.Nagy, P.Pokorny, D.Lukas: Laboratory synthesis of carbon nanostructured materials using natural gas, Materials Letters79 (2012), pp. 35–3810.1016/j.matlet.2012.03.101Suche in Google Scholar
14 A. I.Nikolaev, B. V.Peshnev, A. S.Ismail: Preparation of carbon nanofibers from electrocracking gas on an iron oxide catalyst, Solid Fuel Chemistry43 (2009), No. 1, pp. 35–3710.3103/S036152190901008XSuche in Google Scholar
15 Y.Soneda, K.Szostak, S.Delpeux, S.Bonnamy, F.Béguin, High yield of multiwalled carbon nanotubes from the decomposition of acetylene on Co/MgO catalyst: American Institute of Physics Conference Proceedings, Vol. 591, No. 1, AIP Publishing Center Melville, NY 1147-4300, USA (2001), pp. 199–20310.1063/1.1426853Suche in Google Scholar
16 K. Y.Lee, W. M.Yeoh, S. P.Chai, A. R.Mohamed: Utilization of compressed natural gas for the production of carbon nanotubes, Journal of Natural Gas Chemistry21 (2012), No. 6, pp. 620–62410.1016/S1003-9953(11)60410-6Suche in Google Scholar
17 G.Zhong, S.Hofmann, F.Yan, H.Telg, J. H.Warner, D.Eder, C.Thomsen, W. I.Milne, J.Robertson: Acetylene: a key growth precursor for single-walled carbon nanotube forests, The Journal of Physical Chemistry C113 (2009), No. 40, pp. 17321–1732510.1021/jp905134bSuche in Google Scholar
18 R.Philippe, Ph.Serp, Ph.Kalck, Y.Kihn, S.Bordère, D.Plee, P.Gaillard, D.Bernard, B.Caussat: Kinetic study of carbon nanotubes synthesis by fluidized bed chemical vapor deposition, American Institute of Chemical Engineers Journal55 (2009), No. 2, pp. 450–46410.1002/aic.11676Suche in Google Scholar
19 S. W.Jeong, S. Y.Son, D. H.Lee: Synthesis of multi-walled carbon nanotubes using Co–Fe–Mo/Al2O3 catalytic powders in a fluidized bed reactor, Advanced Powder Technology21 (2010), No. 2, pp. 93–9910.1016/j.apt.2009.10.008Suche in Google Scholar
20 J.Bharj, S.Singh, S.Chander, R.Singh: Flame Synthesis of Carbon Nanotubes using Domestic LPG, R. B.PatelandB. P.Singh (Eds.): International Conference on Methods and models in Science and Technology (ICM 2ST-10). AIP Conference Proceedings Vol. 1324, No. 1, American Institute of Physics, College Park, MD (2010), pp. 389–39310.1063/1.3526241Suche in Google Scholar
21 P.Ndungu, Z. G.Godongwana, L. F.Petrik, A.Nechaev, S.Liao, V.Linkov: Synthesis of carbon nanostructured materials using LPG, Microporous and Mesoporous Materials116 (2008), No. 1, pp. 593–60010.1016/j.micromeso.2008.05.030Suche in Google Scholar
22 Q.Zhang, Y.Liu, J.Huang, W.Qian, Y.Wang, F.Wie: Synthesis of Single-walled Carbon Nanotubes from Liquefied Petroleum Gas, Nano: Brief Reports and Reviews3 (2008), No. 2, pp. 95–10010.1142/s179329200800085xSuche in Google Scholar
23 W.Qian, H.Yu, F.Wei, Q.Zhang, Z.Wang: Synthesis of carbon nanotubes from liquefied petroleum gas containing sulfur, Carbon40 (2002), No. 15, pp. 2968–297010.1016/s0008-6223(02)00244-0Suche in Google Scholar
24 Š.Kavecký, J.Valúchová, M.Čaplovičová, S.Heissler, P.Šajgalík, M.Janek: Nontronites as catalyst for synthesis of carbon nanotubes by catalytic chemical vapor deposition, Applied Clay Science114 (2015), pp. 170–17810.1016/j.clay.2015.06.001Suche in Google Scholar
25 A.Veksha, A.Giannis, V. W-. C.Chang: Conversion of non-condensable pyrolysis gases from plastics into carbon nanomaterials: Effects of feedstock and temperature, Journal of Analytical and Applied Pyrolysis124 (2017), pp. 16–2410.1016/j.jaap.2017.03.005Suche in Google Scholar
26 P.Setyopratomo, P. P.Wulan, M.Sudibandriyo, Production of carbon nanotubes: Chemical vapor deposition synthesis from liquefied petroleum gas over Fe-Co-Mo tri-metallic catalyst supported on MgO: Proceedings of the 3rd AUN/SEED-NET Regional Conference on Energy Engineering and the 7th International Conference on Thermofluids (2015), Yogyakarta (Indonesia), Vol. 1737, No. 1, AIP Publishing, Melville, NY, USA (2016), pp. 030007-1-030007-10 10.1063/1.4949287Suche in Google Scholar
27 M. P.Akbarzadeh, R.Poursalehi: Carbon nanotube formation over laser ablated M and M/Pd (M = Fe, Co, Ni) catalysts: The effect of Pd0 addition, Fullerenes, Nanotubes and Carbon Nanostructures, 24 (2016), No. 10, pp. 611–62110.1080/1536383X.2016.1218334Suche in Google Scholar
28 A. E.Awadallah, A. A.Aboul-Enein, M. A.Azab, Y. K.Abdel-Monem: Influence of Mo or Cu doping in Fe/MgO catalyst for synthesis of single-walled carbon nanotubes by catalytic chemical vapor deposition of methane, Fullerenes, Nanotubes and Carbon Nanostructures25 (2017), No. 4, pp. 256–26410.1080/1536383X.2017.1283619Suche in Google Scholar
29 D. L.Sun, R. Y.Hong, J. Y.Liu, F.Wang, Y. F.Wang: Preparation of carbon nanomaterials using two-group arc discharge plasma, Chemical Engineering Journal, 303 (2016), pp. 217–23010.1016/j.cej.2016.05.098Suche in Google Scholar
30 W.Shi, K.Xue, E. R.Meshot, D. L.Plata: The carbon nanotube formation parameter space: data mining and mechanistic understanding for efficient resource use, Green Chemistry19 (2017), No. 16, pp. 3787–380010.1039/C7GC01421JSuche in Google Scholar
31 S. S.Meysami, A. A.Koos, F.Dillon, N.Grobert: Aerosol-assisted chemical vapour deposition synthesis of multi-wall carbon nanotubes: II. Ananalytical study, Carbon58 (2013), No. 7, pp. 159–16910.1016/j.carbon.2013.02.041Suche in Google Scholar
32 D. S.Sidorenko, G. M.Kuzmicheva, A. B.Dubovskii: Correlation between parameters of carbon nanotubes and conditions of their production by catalytic pyrolysis of hydrocarbons, Theoretical Foundations of Chemical Engineering46 (2012), No. 4, pp. 401–40510.1134/S0040579512040082Suche in Google Scholar
33 N. B.Cherkasov, S. B.Savilov, A. N.Pryakhin, A. S.Ivanov, V. V.Lunin: Kinetic characteristics of the synthesis of multiwall carbon nanotubes by aerosol pyrolysis of a ferrocene solution in benzene, Russian Journal of Physical Chemistry A86 (2012), No.3, pp. 424–42810.1134/S0036024412030077Suche in Google Scholar
34 T.Yamada, J.Kim, M.Ishihara, M.Hasegawa: Low-temperature graphene synthesis using microwave plasma CVD, Journal of Physics D: Applied Physics46 (2013), No. 6, pp. 34–3810.17265/2159-5348/2016.02.005Suche in Google Scholar
35 J. K.Kasi, A. K.Kasi, W.Wongwiriyapan, N.Afzulpurkar, P.Dulyaseree, M.Hasan, A.Tuantranont: Synthesis of Carbon Nanotube and Carbon Nanofiber in Nanopore of Anodic Aluminum Oxide Template by Chemical Vapor Deposition at Atmospheric Pressure, Advanced Materials Research557–559 (2012), pp. 544–54910.4028/www.scientific.net/AMR.557-559.544Suche in Google Scholar
36 A. N.Mohan, B.Manoj: Synthesis and characterization of carbon nanospheres from hydrocarbon soot, International Journal of Electrochemical Science7 (2012), No. 10, pp. 9537–9549Suche in Google Scholar
37 N. D.Shooto, E. D.Dikio: Synthesis and characterization of diesel, kerosene and candle wax soot's, International Journal of Electrochemical Science7 (2012), No. 5, pp. 4335–4344Suche in Google Scholar
38 T.Mohammadi, A.Tofighy, M. A.Pak: Synthesis of carbon nanotubes on macroporous kaolin substrate via a new simple CVD method, International Journal of Chemical Reactor Engineering7 (2009), No. 1, pp. 1–1610.2202/1542-6580.2053Suche in Google Scholar
39 K.Kidena, Y.Kamiyama, M.Nomura: A possibility of the production of carbon nanotubes from heavy hydrocarbons, Fuel processing technology89 (2008), No. 4, pp. 449–45410.1016/j.fuproc.2007.11.021Suche in Google Scholar
40 W.Chaiwat, T.Janjarasskul, A.Eiad-Ua, N.Viriya-Empikul, T.Charinpanitkul, K.Suttiponpanit: Synthesis of Carbon Nanoparticles via Co-Pyrolysis of Waste Slop Oil and Ferrocene, Advanced Materials Research1103 (2015), pp. 97–10310.4028/www.scientific.net/AMR.1103.97Suche in Google Scholar
41 A. B.Suriani, S.Alfarisa, A.Mohamed, I. M.Isa, A.Kamari, N.Hashim, M. H.Mamat, A. R.Mohamed, M.Rusop: Quasi-aligned carbon nanotubes synthesised from waste engine oil, Materials Letters139 (2015), pp. 220–22310.1016/j.matlet.2014.10.046Suche in Google Scholar
42 A.Tkachev, A.Meleznik, T.Dyachkova, A.Blokhin, E.Burakova, T.Pasko: Carbon Nanomaterials of “Taunit” Series: Production and Application, Izvestiya Vysshikh Uchebnykh Zavedenii. Seriya Khimiya i Khimicheskaya Tekhnologiya56 (2014), pp. 55–59Suche in Google Scholar
43 S.Suzuki, S.Mori: Flame Synthesis of Carbon Nanotube through a Diesel Engine Using Normal Dodecane/Ethanol Mixing Fuel as a Feedstock, Journal of Chemical Engineering of Japan50 (2017) No. 33, pp. 178–18510.1252/jcej.16we183Suche in Google Scholar
44 S. H.Abdullayeva, N. N.Musayeva, C.Frigeri, A. B.Huseynov, R. B.Jabbarov, R. B.Abdullayev, Ch. A.Sultanov, R. F.Hasanov: Characterization of high quality carbon nanotubes synthesized via Aerosol-CVD, Journal of Advances in Physics11 (2015). No. 4, pp. 3229–334010.24297/jap.v11i3.6943Suche in Google Scholar
45 S. H.Abdullayeva, A. B.Huseynov, N. N.Musayeva, R. B.Jabbarov, C. A.Sultanov, R. F.Hasanov: Synthesis of Carbon Nanotubes Using Azerbaijan's Oil, Advances in Materials Physics and Chemistry6 (2016), No. 5, pp. 105–11210.4236/ampc.2016.65011Suche in Google Scholar
47 M. A.Hossain, S.Islam, F. A.Chowdhury, T. G.Mohiuddin, K.Uchida, T.Tamura, K.Sugawa, T.Mochida, J.Otsuki, M. S.Alam: Structural, mechanical, and electrical properties of carbon nanoparticles synthesized from diesel, Fullerenes, Nanotubes and Carbon Nanostructures24 (2016), No. 1, pp. 43–5110.1080/1536383X.2015.1092436Suche in Google Scholar
© 2018, Carl Hanser Verlag, München
Artikel in diesem Heft
- Inhalt/Contents
- Contents
- Fachbeiträge/Technical Contributions
- An investigation of the crash performance of magnesium, aluminum and advanced high strength steels and different cross-sections for vehicle thin-walled energy absorbers
- Model-based correlation between change of electrical resistance and change of dislocation density of fatigued-loaded ICE R7 wheel steel specimens
- Tensile strength of 3D printed materials: Review and reassessment of test parameters
- Numerical calculation of stress concentration of various subsurface and undercutting pit types
- Chemical composition of chosen phase constituents in austempered ductile cast iron
- Investigation of initial yielding in the small punch creep test
- Optimization and characterization of friction surfaced coatings of ferrous alloys
- Influence of the milling process on TiB2 particle reinforced Al-7 wt.-% Si matrix composites
- In-situ compaction and sintering of Al2O3 – GNP nanoparticles using a high-frequency induction system
- Strain-rate controlled Gleeble experiments to determine the stress-strain behavior of HSLA steel S960QL
- Thermography using a 1D laser array – From planar to structured heating
- Schichtdickenbestimmung von Oberflächenschutzsystemen für Beton mit Impulsthermografie
- Microstructure and mechanical properties of fly ash particulate reinforced AA8011 aluminum alloy composites
- High temperature compressive behavior of three-dimensional five-directional braided composites
- Dry sliding behavior of the aluminum alloy 8011 composite with 8 % fly ash
- Review on nanostructures from catalytic pyrolysis of gas and liquid carbon sources
Artikel in diesem Heft
- Inhalt/Contents
- Contents
- Fachbeiträge/Technical Contributions
- An investigation of the crash performance of magnesium, aluminum and advanced high strength steels and different cross-sections for vehicle thin-walled energy absorbers
- Model-based correlation between change of electrical resistance and change of dislocation density of fatigued-loaded ICE R7 wheel steel specimens
- Tensile strength of 3D printed materials: Review and reassessment of test parameters
- Numerical calculation of stress concentration of various subsurface and undercutting pit types
- Chemical composition of chosen phase constituents in austempered ductile cast iron
- Investigation of initial yielding in the small punch creep test
- Optimization and characterization of friction surfaced coatings of ferrous alloys
- Influence of the milling process on TiB2 particle reinforced Al-7 wt.-% Si matrix composites
- In-situ compaction and sintering of Al2O3 – GNP nanoparticles using a high-frequency induction system
- Strain-rate controlled Gleeble experiments to determine the stress-strain behavior of HSLA steel S960QL
- Thermography using a 1D laser array – From planar to structured heating
- Schichtdickenbestimmung von Oberflächenschutzsystemen für Beton mit Impulsthermografie
- Microstructure and mechanical properties of fly ash particulate reinforced AA8011 aluminum alloy composites
- High temperature compressive behavior of three-dimensional five-directional braided composites
- Dry sliding behavior of the aluminum alloy 8011 composite with 8 % fly ash
- Review on nanostructures from catalytic pyrolysis of gas and liquid carbon sources