Microstructure and mechanical properties of fly ash particulate reinforced AA8011 aluminum alloy composites
-
Subramaniam Magibalan
Abstract
The objective of this study was to investigate the synthesis and characterization of aluminum alloy AA8011 reinforced with various amounts (0, 4, 8 and 12 wt.-%) of fly ash (FA) particles by the stir casting method. The wettability of fly ash particles in the matrix was improved by adding 0.5 wt.-% of Mg into the solution. Fly ash particles were combined with the semi-solid aluminum solution. The microstructure and mechanical properties of the fabricated aluminum matrix composites were analysed. The optical and SEM with EDX revealed a homogeneous dispersion of fly ash particles in the aluminum matrix composites. The aluminum matrix composites were characterized by a homogeneous distribution of fly ash particles having clear boundaries and good bonding qualities to the aluminum matrix. Mechanical properties such as hardness and tensile strength improve with an increase in weight percentage of fly ash particulates in the AMCs.
Kurzfassung
Das Ziel der diesem Beitrag zurngunde liegenden Studie bestand darin, die Synthese und die Charakterisierung der Aluminiumlegierung AA8011 vorzunehmen, die mit verschiedenen gehalten an Flugasche-Partikeln mittels des Rührgießens verstärkt wurde. Die Benetzbarkeit der Flugaschepartikel in der Matrix wurde verbessert, indem 0,5 wt.-% Mg in die Lösung zugegeben wurde. Die Flugaschepartikel wurden mit einer halbfesten Aluminiumlösung vermischt. Die Mikrostruktur und die mechanischen Eigenschaften der so hergestellten Aluminiummatrix-Komposite wurden analysiert. Die optische sowie die Rasterelektronenmikroskopie mit EDX ergaben eine homogene Verteilung der Flugaschepartikel in den Aluminiummatrix-Kompositen. Die Aluminiummatrix-Komposite zeigten zudem eine klare Grenze der Flugaschepartikel und eine gute Verbindung zur Aluminiummatrix. Die mechanischen Eigenschaften, wie die Härte und die Zugfestigkeit verbesserten sich mit der Zunahme der Gewichtsanteile an Flugasche.
References
1 M. K.Surappa: Aluminium matrix composites: Challenges and opportunities, Sadhana28 (2003), No. 1–2, pp. 319–33410.1007/bf02717141Suche in Google Scholar
2 E.Marin, M.Lekka, F.Andreatta, L.Fedrizzi, G.Itskos, A.Moutsatsou, N.Koukouzas, N.Kouloumbi: Electrochemical study of aluminum-fly ash composites obtained by powder metallurgy, Materials Characterization69 (2012), pp. 16–3010.1016/j.matchar.2012.04.004Suche in Google Scholar
3 S.Soltani, R. AzariKhosroshahi, R. TaherzadehMousavian, Z. Y.Jiang, A. FadaviBoostani, D.Brabazon: Stir casting process for manufacture of Al–SiC composites, Rare Metals36 (2015), No. 7, pp. 581–59010.1007/s12598-015-0565-7Suche in Google Scholar
4 I.Dinaharan, R.Nelson, S. J.Vijay, E. T.Akinlabi: Microstructure and wear characterization of aluminum matrix composites reinforced with industrial waste fly ash particulates synthesized by friction stir processing, Materials Characterization118 (2016), pp. 149–15810.1016/j.matchar.2016.05.017Suche in Google Scholar
5 J. David RajaSelvam, D. S. RobinsonSmart, I.Dinaharan: Microstructure and some mechanical properties of fly ash particulate reinforced AA6061 aluminum alloy composites prepared by compocasting, Materials & Design49 (2013), pp. 28–3410.1016/j.matdes.2013.01.053Suche in Google Scholar
6 T.Rajmohan, K.Palanikumar, S.Ranganathan: Evaluation of mechanical and wear properties of hybrid aluminium matrix composites, Transactions of Nonferrous Metals Society of China23(2013), No. 9, pp. 2509–251710.1016/s1003-6326(13)62762-4Suche in Google Scholar
7 S.Amirkhanlou, B.Niroumand: Synthesis and characterization of 356-SiCp composites by stir casting and compocasting methods, Transactions of Nonferrous Metals Society of China20(2010), pp. s788–s79310.1016/s1003-6326(10)60582-1Suche in Google Scholar
8 B. A.Kumar, N.Murugan, I.Dinaharan: Dry sliding wear behavior of stir cast AA6061-T6/AlNp composite, Transactions of Nonferrous Metals Society of China24 (2014) No. 9, pp. 2785–279510.1016/s1003-6326(14)63410-5Suche in Google Scholar
9 K.Kalaiselvan, I.Dinaharan, N.Murugan: Characterization of friction stir welded boron carbide particulate reinforced AA6061 aluminum alloy stir cast composite, Materials & Design, 55 (2014), pp. 176–18210.1016/j.matdes.2013.09.067Suche in Google Scholar
10 H. B. MichaelRajan, S.Ramabalan, I.Dinaharan, and S. J.Vijay: Synthesis and characterization of in situ formed titanium diboride particulate reinforced AA7075 aluminum alloy cast composites, Materials & Design, 44 (2013), pp. 438–44510.1016/j.matdes.2012.08.008Suche in Google Scholar
11 A.Baradeswaran, A. ElayaPerumal: Study on mechanical and wear properties of Al 7075/Al2O3/graphite hybrid composites, Composites Part B: Engineering, 56 (2014), pp. 464–47110.1016/j.compositesb.2013.08.013Suche in Google Scholar
12 David RajaSelvam, I.Dinaharan: In situ formation of ZrB2 particulates and their influence on microstructure and tensile behavior of AA7075 aluminum matrix composites, Engineering Science and Technology: An International Journal, 20 (2017), No. 1, pp. 187–19610.1016/j.jestch.2016.09.006Suche in Google Scholar
13 I.Dinaharan, N.Murugan, S.Parameswaran: Influence of in situ formed ZrB2 particles on microstructure and mechanical properties of AA6061 metal matrix composites, Materials Science and Engineering: A, 528(2011), No. 18, pp. 5733–574010.1016/j.msea.2011.04.033Suche in Google Scholar
14 C. S.Ramesh, R.Keshavamurthy, B. H.Channabasappa, A.Ahmed: Microstructure and mechanical properties of Ni–P coated Si3N4 reinforced Al6061 composites, Materials Science and Engineering: A, 502 (2009), No. 1–2, pp. 99–10610.1016/j.msea.2008.10.012Suche in Google Scholar
15 K. J.Lijay, J. D. R.Selvam, I.Dinaharan, S. J.Vijay: Microstructure and mechanical properties characterization of AA6061/TiC aluminum matrix composites synthesized by in situ reaction of silicon carbide and potassium fluotitanate, Transactions of Nonferrous Metals Society of China, 26 (2016), No. 7, pp. 1791–180010.1016/s1003-6326(16)64255-3Suche in Google Scholar
16 J. J.Moses, I.Dinaharan, S. J.Sekhar: Prediction of influence of process parameters on tensile strength of AA6061/TiC aluminum matrix composites produced using stir casting, Transactions of Nonferrous Metals Society of China26 (2016), No. 6, pp. 1498–151110.1016/s1003-6326(16)64256-5Suche in Google Scholar
17 A.Kumar, S.Lal, S.Kumar: Fabrication and characterization of A359/Al2O3 metal matrix composite using electromagnetic stir casting method, Journal of Materials Research and Technology, 2 (2013), No. 3, pp. 250–25410.1016/j.jmrt.2013.03.015Suche in Google Scholar
18 S. P.Dwivedi, S.Sharma, R. K.Mishra: Microstructure and mechanical behavior of A356/SiC/Fly-ash hybrid composites produced by electromagnetic stir casting, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 37 (2014), No. 1, pp. 57–6710.1007/s40430-014-0138-ySuche in Google Scholar
19 J.Lan, Y.Yang, X.Li: Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method, Materials Science and Engineering A, 386 (2004), No. 1–2, pp. 284–29010.1016/j.msea.2004.07.024Suche in Google Scholar
20 S.Suresh, N.ShenbagaVinayagaMoorthi, S. C.Vettivel, N.Selvakumar: Mechanical behavior and wear prediction of stir cast Al–TiB2 composites using response surface methodology, Materials & Design59 (2014), pp. 383–39610.1016/j.matdes.2014.02.053Suche in Google Scholar
21 Y.Li, Q.Li, D.Li, W.Liu, G.Shu: Fabrication and characterization of stir casting AA6061-31 %B4C composite, Transactions of Nonferrous Metals Society of China, 26 (2016), No. 9, pp. 2304–231210.1016/s1003-6326(16)64322-4Suche in Google Scholar
22 J. A. K.Gladston, N. M.Sheriff, I.Dinaharan, J. D. RajaSelvam: Production and characterization of rich husk ash particulate reinforced AA6061 aluminum alloy composites by compocasting, Transactions of Nonferrous Metals Society of China25 (2015), No. 3, pp. 683–69110.1016/s1003-6326(15)63653-6Suche in Google Scholar
23 C. S.Ramesh, A.Ahamed, B. H.Channabasappa, R.Keshavamurthy: Development of Al 6063-TiB2 in situ composites, Materials & Design31 (2010), No. 4, pp. 2230–223610.1016/j.matdes.2009.10.019Suche in Google Scholar
24 K.Kalaiselvan, N.Murugan, S.Parameswaran: Production and characterization of AA6061-B4C stir cast composite. Materials & Design32 (2011), No. 7, pp. 4004–400910.1016/j.matdes.2011.03.018Suche in Google Scholar
© 2018, Carl Hanser Verlag, München
Artikel in diesem Heft
- Inhalt/Contents
- Contents
- Fachbeiträge/Technical Contributions
- An investigation of the crash performance of magnesium, aluminum and advanced high strength steels and different cross-sections for vehicle thin-walled energy absorbers
- Model-based correlation between change of electrical resistance and change of dislocation density of fatigued-loaded ICE R7 wheel steel specimens
- Tensile strength of 3D printed materials: Review and reassessment of test parameters
- Numerical calculation of stress concentration of various subsurface and undercutting pit types
- Chemical composition of chosen phase constituents in austempered ductile cast iron
- Investigation of initial yielding in the small punch creep test
- Optimization and characterization of friction surfaced coatings of ferrous alloys
- Influence of the milling process on TiB2 particle reinforced Al-7 wt.-% Si matrix composites
- In-situ compaction and sintering of Al2O3 – GNP nanoparticles using a high-frequency induction system
- Strain-rate controlled Gleeble experiments to determine the stress-strain behavior of HSLA steel S960QL
- Thermography using a 1D laser array – From planar to structured heating
- Schichtdickenbestimmung von Oberflächenschutzsystemen für Beton mit Impulsthermografie
- Microstructure and mechanical properties of fly ash particulate reinforced AA8011 aluminum alloy composites
- High temperature compressive behavior of three-dimensional five-directional braided composites
- Dry sliding behavior of the aluminum alloy 8011 composite with 8 % fly ash
- Review on nanostructures from catalytic pyrolysis of gas and liquid carbon sources
Artikel in diesem Heft
- Inhalt/Contents
- Contents
- Fachbeiträge/Technical Contributions
- An investigation of the crash performance of magnesium, aluminum and advanced high strength steels and different cross-sections for vehicle thin-walled energy absorbers
- Model-based correlation between change of electrical resistance and change of dislocation density of fatigued-loaded ICE R7 wheel steel specimens
- Tensile strength of 3D printed materials: Review and reassessment of test parameters
- Numerical calculation of stress concentration of various subsurface and undercutting pit types
- Chemical composition of chosen phase constituents in austempered ductile cast iron
- Investigation of initial yielding in the small punch creep test
- Optimization and characterization of friction surfaced coatings of ferrous alloys
- Influence of the milling process on TiB2 particle reinforced Al-7 wt.-% Si matrix composites
- In-situ compaction and sintering of Al2O3 – GNP nanoparticles using a high-frequency induction system
- Strain-rate controlled Gleeble experiments to determine the stress-strain behavior of HSLA steel S960QL
- Thermography using a 1D laser array – From planar to structured heating
- Schichtdickenbestimmung von Oberflächenschutzsystemen für Beton mit Impulsthermografie
- Microstructure and mechanical properties of fly ash particulate reinforced AA8011 aluminum alloy composites
- High temperature compressive behavior of three-dimensional five-directional braided composites
- Dry sliding behavior of the aluminum alloy 8011 composite with 8 % fly ash
- Review on nanostructures from catalytic pyrolysis of gas and liquid carbon sources