Startseite In-situ compaction and sintering of Al2O3 – GNP nanoparticles using a high-frequency induction system
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

In-situ compaction and sintering of Al2O3 – GNP nanoparticles using a high-frequency induction system

  • Uğur Çavdar , İ. Murat Kusoglu und Ayberk Altintas
Veröffentlicht/Copyright: 13. Juli 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In-situ compaction and sintering of nanopowders are of great interest with respect to industrial production because they save time and energy. As a key study, Al2O3-1 wt.-% GNP composites were mixed in a V-type mixer for 2 hours at 35 cycle/min to obtain homogeneous mixtures. Mixed graphene nanoplatelets and alumina nanoparticles were compacted and sintered in-situ by applying uni-axial pressure in a graphite die, heated and generated by the ultra high-frequency induction system (UHFIHS). The graphite die was heated to 1500, 1550, 1600 and 1650 °C for 5, 10 and 20 minutes under a vacuum. The effect of sintering temperature and time on density, surface roughness, hardness and the microstructure of in-situ sintered nano graphene-alumina compacts were investigated.

Kurzfassung

Das in-situ Kompaktieren und Sintern von Nanopulvern sind von großem Interesse bei ihrer industriellen Herstellung, weil damit Zeit und Kosten eingespart werden können. Als eine Schlüsselstudie wurden für den vorliegenden Beitrag Al2O3-1 wt.-% GNP Komposite in einem Mischer des V-Typs für zwei Stunden und über 35 Zyklen pro Stunde gemischt, um homogene Mischungen zu erhalten. Es wurden gemischte Graphen-Nanoplättchen und Aluminiumoxid-Nanopartikel kompaktiert und in-situ gesintert, indem ein uniaxialer Druck unter Hitze in einer Graphitform unter Anwendung eines Ultra-Hochfrequenz-Induktionssystemes (ultra high-frequency induction system (UHFIHS)) aufgebracht wurde. Die Grafitform wurde auf 1500, 1550, 1600 und 1650 °C für 5, 10 und 20 Minuten in einem Vakuum erhitzt. Es wurde die Auswirkung der Sintertemperatur und -zeit auf die Dichte, Oberflächenrauheit, Härte und Mikrostruktur der in-situ gesinterten Nano-Graphen-Alumniumoxid-Materialien untersucht.


*Correspondence Address, Assoc. Prof. Dr. Uğur Çavdar, Engineering Faculty, Mechanical Engineering Department, İzmir Demokrasi University, 35140, Karabağlar-İzmir, Turkey, E-mail:

Dr. Uğur Çavdar, born 1981, studied Mechanical Engineering. Since 2018, he has been Associate Professor at Izmir Demokrasi University in Izmir, Turkey. His studies include powder metallurgy, iron-based powders, induction sintering, novel and rapid sintering methods, induction systems, hot forging, heat treatments, welding, induction welding, alumina GNP as well as nanotechnology. He is a member of the Turkish Powder Metal Association and the European Powder Metal Association (EPMA).

Dr. İhsan Murat Kuşoğlu, born 1981, studied Materials Engineering and is Associate Professor at 9 Eylül University in Izmir, Turkey. His studies include powder metallurgy, iron-based powders, microwave sintering, SEM analyses as well as composite materials.

Ayberk Altıntaş, born 1991, studied Mechanical Engineering and is Project Researcher at Celal Bayar University in Manisa, Turkey. His studies include powder metallurgy, nanopowders, induction sintering.


References

1 R. M.German: Powder Metallurgy & Particulate Materials Processing, Metal Powder Industries Federation, New Jersey, USA (2005)Suche in Google Scholar

2 M.Kıran: The forming of alumina by extrusion, MSc Thesis, Graduate School of Natural and Applied Sciences, Department of Ceramic Engineering, Afyon Kocatepe University, Afyon, Turkey (2006)Suche in Google Scholar

3 Z.Yin, C.Huang, B.Zhou, H.Liu, H.Zhu, J.Wang: A study of the mechanical properties, strengthening and toughening mechanisms of Al2O3/TiC micro-nano-composite ceramic tool material, Materials Science and Engineering A577 (2013), pp. 91510.1016/j.msea.2013.04.033Suche in Google Scholar

4 A.Conteno, V. G.Rocha, B.Alonso, A.Fernandez, C. F.Gutierrez-Gonzalez, R.Torrecillas, A.Zurutuza: Graphene for tough and electroconductive alumina ceramics, Journal of the European Ceramic Society33 (2013), No. 15–16, pp. 3201321010.1016/j.jeurceramsoc.2013.07.007Suche in Google Scholar

5 H.Porwal, P.Tatarko, S.Grasso, J.Khaliq, I.Dlouhy, M. J.Reece: Graphene reinforced alumina nano-composites, Carbon64 (2013), pp. 35936910.1016/j.carbon.2013.07.086Suche in Google Scholar

6 J.Liu, H.Yan, K.Jiang: Mechanical properties of graphene platelet-reinforced alumina ceramics composites, Ceramics International39 (2013), No. 6, pp. 6215622110.1016/j.ceramint.2013.01.041Suche in Google Scholar

7 A.Acar, Ö.Ü. Çolak, D.Uzunsoy: Synthesis and characterization of graphene-epoxy nanocomposites, Materials Testing57 (2015), No. 11–12, pp. 1001100510.3139/120.110804Suche in Google Scholar

8 P.Avouris, C.Dimitrakopoulos: Graphene: Synthesis and applications, Materials Today15 (2012), No. 3, pp. 869710.1016/S1369-7021(12)70044-5Suche in Google Scholar

9 D.Li, Z.Yang, D.Jia, X.Duan, P.He, J.Yu, Y.Zhou: Spark plasma sintering and toughening of graphene platelets reinforced SiBCN nanocomposites, Ceramics International41 (2015), No. 9, pp. 107551076510.1016/j.ceramint.2015.05.011Suche in Google Scholar

10 K.Munir, Y.Li, M.Quan, C.Wen: Identifying and understanding the effect of milling energy on the synthesis of carbon nanotubes reinforced titanium metal matrix composites, Carbon99 (2016), pp. 38439710.1016/j.carbon.2015.12.041Suche in Google Scholar

11 K.Munir, Y.Li, D.Liang, M.Qian, W.Xu, C.Wen: Effect of dispersion method on the deterioration, interfacial interactions and re-agglomeration of carbon nanotubes in titanium metal matrix composites, Materials Design88 (2015), pp. 13814810.1016/j.matdes.2015.08.112Suche in Google Scholar

12 M.Aminzare, M.Mazaheri, F.Golestani-fard, H. R.Rezaie, R.Ajeian: Sintering behavior of nano alumina powder shape by pressure filtration, Ceramics International37 (2011), No. 1, pp. 91410.1016/j.ceramint.2010.07.027Suche in Google Scholar

13 M.Dadkhah, A.Saboori, M.Jafari: Investigating the physical properties of sintered alumina the presence of MgO nanopowder, Hindawi Publishing Corporation Journal of Materials (2014), Article ID: 496146, pp. 1710.1155/2014/496146Suche in Google Scholar

14 B.Yazdani, Y.Xia, I.Ahmad, Y.Zhu: Graphene and carbon nanotube (GNT)-reinforced alumina nanocomposites, Journal of the European Ceramic Society35 (2015), pp. 17918610.1016/j.jeurceramsoc.2014.08.043Suche in Google Scholar

15 Y.Celik, A.Celik, E.Flahaut, E.Suvaci: Anisotropic mechanical and functional properties of graphene-based alumina nanocomposites, Journal of the European Ceramic Society36 (2016), No. 8, pp. 2075208610.1016/j.jeurceramsoc.2016.02.032Suche in Google Scholar

16 U.Çavdar, E.Atik: Investigation of conventional- and induction-sintered iron and iron-based powder metal compacts, JOM66 (2014), No. 6, pp. 1027103410.1007/s11837-014-0977-0Suche in Google Scholar

17 B. J.Abbasi, M.Zakeri, S. A.Tayebifard: High-frequency induction heated sintering of nanostructured Al2O3-ZrB2 composite produced by MASHS technique, Ceramics International40 (2014), No. 7, pp. 9217922410.1016/j.ceramint.2014.01.141Suche in Google Scholar

18 S. J.Oh, B-S.Kim, I.-J.Shon: Mechanical properties and rapid consolidation of nanostructured WC and WC-Al2O3 composites by high-frequency induction-heated sintering, International Journal of Refractory Metals and Hard Metarials58 (2016), pp. 18919510.1016/j.ijrmhm.2016.04.016Suche in Google Scholar

19 X.Yao, Z.Huang, L.Chen, D.Jiang, S.Tan, D.Michel, G.Wang, L.Mazerolles, J.-L.Pastol: Alumina-nickel composites densified by spark plasma sintering, Materials Letters59 (2005), No. 18, pp. 2314231810.1016/j.matlet.2005.03.012Suche in Google Scholar

20 P. SarıÇavdar, U.Çavdar: The evaluation of different environments in ultra high-frequency induction sintered powder metal compacts, Revista de Metallurgia51 (2015), No. 1, e036, pp. 1810.3989/revmetalm.036Suche in Google Scholar

21 U.Çavdar, E.Yalamaç, I.Gülşahin: Effects of surface finishing on the mechanical properties of induction welded iron based sintered compacts, Materials Testing56 (2014), No. 10, pp. 85285710.3139/120.110640Suche in Google Scholar

22 U.Çavdar, İ. M.Kuşoğlu: Effects of coil design on induction welding of sintered iron based compacts, Materials Testing56 (2014), No. 11–12, pp. 97397910.3139/120.110641Suche in Google Scholar

23 U.Çavdar: Mechanical properties of hot forged ANSI 1050 steel, Materials Testing56 (2014), No. 3, pp. 20821210.3139/120.110555Suche in Google Scholar

24 I-J.Shon, S.-H.Jo, J.-M.Doh, J.-K.Yoon, B.-J.Park: Mechanical synthesis and rapid consolidation of nanostructured FeAl-Al2O3 composites by high-frequency induction heated sintering, Ceramics International38 (2012), No. 7, pp. 6035603910.1016/j.ceramint.2012.03.073Suche in Google Scholar

Published Online: 2018-07-13
Published in Print: 2018-07-16

© 2018, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. An investigation of the crash performance of magnesium, aluminum and advanced high strength steels and different cross-sections for vehicle thin-walled energy absorbers
  5. Model-based correlation between change of electrical resistance and change of dislocation density of fatigued-loaded ICE R7 wheel steel specimens
  6. Tensile strength of 3D printed materials: Review and reassessment of test parameters
  7. Numerical calculation of stress concentration of various subsurface and undercutting pit types
  8. Chemical composition of chosen phase constituents in austempered ductile cast iron
  9. Investigation of initial yielding in the small punch creep test
  10. Optimization and characterization of friction surfaced coatings of ferrous alloys
  11. Influence of the milling process on TiB2 particle reinforced Al-7 wt.-% Si matrix composites
  12. In-situ compaction and sintering of Al2O3 – GNP nanoparticles using a high-frequency induction system
  13. Strain-rate controlled Gleeble experiments to determine the stress-strain behavior of HSLA steel S960QL
  14. Thermography using a 1D laser array – From planar to structured heating
  15. Schichtdickenbestimmung von Oberflächenschutzsystemen für Beton mit Impulsthermografie
  16. Microstructure and mechanical properties of fly ash particulate reinforced AA8011 aluminum alloy composites
  17. High temperature compressive behavior of three-dimensional five-directional braided composites
  18. Dry sliding behavior of the aluminum alloy 8011 composite with 8 % fly ash
  19. Review on nanostructures from catalytic pyrolysis of gas and liquid carbon sources
Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.111215/html
Button zum nach oben scrollen