Startseite Production of nano-sized grains in powder metallurgy processed pure aluminum by equal channel angular densification (ECAD) and equal channel angular pressing (ECAP)
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Production of nano-sized grains in powder metallurgy processed pure aluminum by equal channel angular densification (ECAD) and equal channel angular pressing (ECAP)

  • Melih Turan İpekçi , Ahmet Güral und Süleyman Tekeli
Veröffentlicht/Copyright: 15. Mai 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, pure aluminum powders were turned into bulk material using equal channel angular densification (ECAD)/equal channel angular pressing (ECAP) and further deformed up to 16 passes at 100 °C. For comparison, pure aluminum powders were also compacted in a mold without ECAD/ECAP process at the same temperature. The microstructures were characterized using TEM for grain size and shape measurements. In general, the grains were finer in the specimens processed by ECAD/ECAP than in the compacted specimen without ECAD/ECAP process. The high density which is very close to the full density of pure aluminum (2.7 g × cm-3) was reached at the second pass of ECAD/ECAP. By the application of ECAD/ECAP process, severe plastic deformation enabled particles to be compacted into fully dense materials at much lower temperatures and shorter times, compared to the conventional sintering process. The ECAD/ECAP process was shown to provide an effective method for producing nano-sized grain and nearly full densification in aluminum powder.

Kurzfassung

In der diesem Beitrag zugrunde liegenden Studie wurden Pulver aus Reinaluminium zu einem Werkstoff verarbeitet, in dem die Verfahren Equal Channel Angular Densification (ECAD) und Equal Channel Angular Pressing (ECAP) eingesetzt wurden. Danach wurden die Proben in bis zu 16 Durchgängen bei 100 °C weiter verformt. Zum Vergleich wurden Reinaluminiumpulver außerdem in einer Form ohne den ECAD/ECAP-Prozess bei derselben Temperatur verfestigt. Die hohe Dichte, die sehr nah an der Gesamtdichte von Reinaluminium (2,7 g × cm3) lag, wurde mit dem zweiten Bearbeitungsgang des ECAD/ECAP-Verfahrens erreicht. Durch die Anwendung des ECAD/ECAP-Prozesses wurde eine erhebliche plastische Verformung erreicht, mit der es gelang, Partikel in die voll verdichteten Materialien bei viel niedrigeren Temperaturen und kürzeren Zeiten im Vergleich zu konventionellen Sinterprozessen einzubauen. Der ECAD/ECAP-Prozess erwies sich als effektives Verfahren, um nanoskalige Körner zu erzeugen und eine nahezu vollständige Verdichtung der Aluminiumpulver zu erreichen.


§Correspondence Address, Melih Turan İpekçi, Department of Metal and Metallurgical Science, Technology Faculty, Gazi University, 06500 Besevler-Ankara, Turkey, E-mail:

Melih Turan İpekçi is a PhD degree student in the Department of Metal and Metallurgical Science of the Technology Faculty, Gazi University, Ankara, Turkey. He received his MSc degree from the same university and department. His working area includes metal shape and design as well as powder metallurgy.

Assoc. Prof. Dr. Ahmet Güral is a lecturer in the Department of Metallurgical Science of the Technology Faculty, Gazi University, Ankara, Turkey. He received his MSc and PhD degrees from the Faculty of Metallurgy Education of Gazi University. His work at the university involves giving courses and conducting research in the areas of powder metallurgy, microstructure of steels as well as machinability of steel.

Prof. Dr. Süleyman Tekeli is a lecturer in the Department of Metallurgical Science of the Technology Faculty, Gazi University, Ankara, Turkey. He received his MSc and PhD degrees from the same faculty. His work at the university involves giving courses and conducting research in the areas of fuel. He is the author of a number of international publications on these subjects.


References

1 KumarK. S., VanS., SwygenhovenH., SureshS.: Mechanical behavior of nanocrystalline metals and alloys, Acta Mater. 51 (2003), pp. 5743577410.1016/j.actamat.2003.08.032Suche in Google Scholar

2 ValievR. Z., IslamgalievR. K., AlexandrovI. V.: Bulk nanostructured materials from severe plastic deformation, Progress in Materials Science45 (2000), pp. 10318910.1016/S0079-6425(99)00007-9Suche in Google Scholar

3 WangY. M., ChenM. W., ZhouF. H., MaE.: High tensile ductility in a nanostructured metal, Nature419 (2002), pp. 91291510.1038/nature01133Suche in Google Scholar PubMed

4 ValievR. Z., LangdonT. G.: Principles of equal channel angular pressing as a processing tool for grain refinement, Progress in Materials Science51 (2006), pp. 88198110.1016/j.pmatsci.2006.02.003Suche in Google Scholar

5 XiaK., WuX., HonmaT., RingerS. P.: Ultrafine pure aluminum through back pressure equal channel angular consolidation (BP-ECAC) of particles, Journal of Materials Science42 (2007), pp. 1551156010.1007/s10853-006-0819-8Suche in Google Scholar

6 XiaK., WuX., Back pressure equal channel angular consolidation of pure Al particles, Scripta Materialia53 (2005), pp. 1225122910.1016/j.scriptamat.2005.08.012Suche in Google Scholar

7 ValievR. Z.: Nanostructuring of metals by severe plastic deformation for advanced properties, Nature Mater. 3 (2004), pp. 51151610.1038/nmat1180Suche in Google Scholar PubMed

8 XuW., WuX., HonmaT., RingerS. P., XiaK.: Nanostructured Al-Al2O3 composite formed in situ during consolidation of ultrafine Al particles by back pressure equal channel angular pressing, Acta Materialia57 (2009), pp. 4321433010.1016/j.actamat.2009.06.010Suche in Google Scholar

9 WertJ. A., PatonN. E, HamiltonC. H., MoneyM.: Grain refinement in 7075 aluminum by thermo-mechanical processing, Metallurgical Transactions A12 (1981), pp. 1267127610.1007/BF02642340Suche in Google Scholar

10 GermanR. M.: Powder Metallurgy & Particulate Materials Processing, Metal Powder Industries Federation, New Jersey, USA (2005)Suche in Google Scholar

11 ChengX., FurukawaM., HoritaZ., TerenceG. L.: Severe plastic deformation as a processing tool for developing superplastic metals, Journal of Alloys and Compounds378 (2004), pp. 273410.1016/j.jallcom.2003.10.065Suche in Google Scholar

12 FigueiredoaR. B., TerenceG. L.: Factors influencing superplastic behavior in a magnesium ZK60 alloy processed by equal channel angular pressing, Materials Science and Engineering503 (2009), pp. 14114410.1016/j.msea.2008.04.080Suche in Google Scholar

13 HyukS. D., CheolK. B., Kyung-TaeP., YongC. W.: Microstructural changes in equal channel angular pressed low carbon steel by static annealing, Acta Materialia48 (2000), pp. 3245325210.1016/S1359-6454(00)00090-2Suche in Google Scholar

14 TsujiN., ToyodaT., MinaminoY., KoizumiY., YamaneT., KiritaniM. K.: Microstructural change of ultrafine-grained aluminum during high-speed plastic deformation, Materials Science and Engineering350 (2003), pp. 10811610.1016/S0921-5093(02)00709-8Suche in Google Scholar

15 ZhangX.LuoH. S., DuZ.: Uniformity and continuity of effective strain in AZ91D processed by multi-pass equal channel angular extrusion, Transactions of Nonferrous Metals Society of China18 (2008), pp. 929810.1016/S1003-6326(08)60017-5Suche in Google Scholar

16 ZhaoJ., SunS.: Microstructures and mechanical properties of high carbon steel after equal channel angular pressing, Proc. of the 2nd International Conference on Mechanical and Electronics Engineering, Kyoto, Japan (2010), pp. 21021310.1109/ICMEE.2010.5558441Suche in Google Scholar

17 ChowdhuryS. G., GubiczaJ., MahatoB., ChinhN. Q., HegedusZ., LangdonT. G.: Texture evolution during room temperature ageing of silverprocessed by equal-channel angular pressing, Scripta Materialia64 (2011), pp. 1007101010.1016/j.scriptamat.2011.02.005Suche in Google Scholar

18 ZhangZ. J., DuanQ. Q., AnX. H., WuS. D., YangG., ZhangZ. F., Microstructure and mechanical properties of Cu and Cu-Zn alloys produced by equal channel angular pressing, Materials Science and Engineering528 (2011), pp. 4259426710.1016/j.msea.2010.12.080Suche in Google Scholar

19 ChenY. J., LiY., WalmsleyJ., DumoulinJ. C., GireeshS., ArmadaS. S., SkaretS., RovenH. J.: Quantitative analysis of grain refinement in titanium during equal channel angular pressing, Scripta Materialia64 (2011), pp. 90490710.1016/j.scriptamat.2011.01.030Suche in Google Scholar

20 DivinskiS. V., ReglitzG., RösnerH., EstrinY., WildeG.: Ultra-fast difusion channels in pure Ni severely deformed by equal-channel angular pressing, Acta Materialia59 (2011), pp. 1974198510.1016/j.actamat.2010.11.063Suche in Google Scholar

21 HoseiniM., MeratianbM., ToroghinejadM. R., SzpunarJ. A.: The role of grain orientation in microstructure evolution of pure aluminum processed by equal channel angular pressing, Materials Characterization61 (2010), pp. 1371137810.1016/j.matchar.2010.09.009Suche in Google Scholar

22 VenkatachalamP., Ramesh KumarS., RavisankarB., ThomasP. V., VijayalakshmiM.: Effect of processing routes on microstructure and mechanical properties of 2014 Al alloy processed by equal channel angular pressing, Tran. Nonferrous Met. Soc. China20 (2010), pp. 1822182810.1016/S1003-6326(09)60380-0Suche in Google Scholar

23 RekikM. A., RebhiA., NjahN.: The effect of copper addition on microstructural parameters of an aluminum alloy processed by equal channel angular pressing, Physics Procedia2 (2009), pp. 1271127910.1016/j.phpro.2009.11.091Suche in Google Scholar

24 SuoT., LiY., XieaK., ZhaoF., ZhangK., LiuY.: The effect of temperature on mechanical behavior of ultrafine-grained copper by equal channel angular pressing, Materials Science and Engineering527 (2010), pp. 5766577210.1016/j.msea.2010.05.046Suche in Google Scholar

25 VaseghiM., TaheriA. K., HongS., Seop KimH.: Dynamic ageing and the mechanical response of Al-Mg-Si alloy through equal channel angular pressing, Materials and Design31 (2010), pp. 4076408210.1016/j.matdes.2010.04.056Suche in Google Scholar

26 ShaaG., WangcY. B., LiaocX. Z., DuandZ. C., RingeraS. P., LangdonT. G.: Microstructural evolution of Fe-rich particles in An Al-Zn-Mg-Cu alloy during equal-channel angular pressing, Materials Science and Engineering527 (2010), pp. 4742474910.1016/j.msea.2010.04.041Suche in Google Scholar

27 MaY. W., YoonK. B.: Assessment of tensile strength using small punch test for transversely isotropic aluminum 2024 alloy produced by equal channel angular pressing, Materials Science and Engineering527 (2010), pp. 3630363810.1016/j.msea.2010.02.057Suche in Google Scholar

28 SaravananM., PillaiR. M., PaiB. C., BrahmakumarM., RaviK. R.: Equal channel angular pressing of pure aluminum – An analysis, Bulletin of Materials Science29 (2006), pp. 679684Suche in Google Scholar

29 WuX., XiaK.: Synthesis of aluminum based bulk materials from micro and nano particle using back pressure equal channel angular consolidation, Materials Science Forum519 (2006), pp. 1215122010.4028/www.scientific.net/MSF.519-521.1215Suche in Google Scholar

30 XiaK., XuW., WuX., GoussousS.: Bulk ultrafine and nanostructured materials from consolidation of particles by back pressure equal channel angular pressing, Materials Science Forum584 (2008), pp. 11912610.4028/www.scientific.net/MSF.584-586.119Suche in Google Scholar

31 KubotaM., WuX., XuW., XiaK.: Mechanical properties of bulk aluminum consolidated from mechanically milled particles by back pressure equal channel angular pressing, Materials Science and Engineering527 (2010), pp. 6533653610.1016/j.msea.2010.06.088Suche in Google Scholar

32 GoussousS., XuW., WuX., XiaK.: Al-C nano composites consolidated by back pressure equal channel angular pressing, Composites Science and Technology69 (2009), pp. 1997200110.1016/j.compscitech.2009.05.004Suche in Google Scholar

Published Online: 2015-05-15
Published in Print: 2015-06-01

© 2015, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Inhalt/Contents
  2. Inhalt
  3. Fachbeiträge/Technical Contributions
  4. Effect of beam oscillation on borated stainless steel electron beam welds
  5. Effects of cold isostatic pressing and granule size distribution on the densification of alumina ceramics
  6. Influence of Al2O3 addition on microstructure and mechanical properties of 3YSZ-Al2O3 composites
  7. Dynamic behavior of stiffened plates under underwater shock loading
  8. Mechanical properties of conventionally and induction sintered Fe-based powder metal bushings
  9. Mechanical and physical properties of hybrid reinforced (Al/B4C/Ni(K)Gr) composite materials produced by hot pressing
  10. Application of the Taguchi method for the optimization of the strength of polyamide 6 composite hot plate welds
  11. Corrosion behavior of Haynes® 230® nickel-based super-alloys for integrated coal gasification combined cycle syngas plants: A plant exposure study
  12. Three dimensional stress analysis of adhesively bonded and multi pinned metal matrix composite plates
  13. Functional ANOVA investigation of the effects of friction welding parameters on the joint characteristics of aluminum based MMC to AISI 304 stainless steel
  14. Comparability of structured and flat reference specimens made of thin sheet metal
  15. A novel procedure for failure criteria determination at solder joints under the board level drop test
  16. Production of nano-sized grains in powder metallurgy processed pure aluminum by equal channel angular densification (ECAD) and equal channel angular pressing (ECAP)
  17. CPE: Novel method to shorten the lead time for laser micro-machining
Heruntergeladen am 22.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.110749/html
Button zum nach oben scrollen