Startseite Predicting fatigue life of welded aluminium joints with combined bending and torsion using energy based criteria*
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Predicting fatigue life of welded aluminium joints with combined bending and torsion using energy based criteria*

  • Tadeusz Lagoda und Martin Küppers
Veröffentlicht/Copyright: 28. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper presents calculations of fatigue life of aluminium welded joints (tube-tube and flange-tube) under pure bending, pure torsion, and combined in- and out-of-phase bending with torsion, compared with against experimental results. In order to reduce a multiaxial loading state to an equivalent uniaxial state, an energy-based criteria is applied in the critical plane where cracking occurs. The best results were obtained using the criterion of maximum shear strain energy density for calculating equivalent local stress amplitude for tube-tube welded joints, for both proportional and non-proportional bending with torsion. For flange-tube joints under proportional and non-proportional bending with torsion, the best results were obtained using the criterion of maximum shear and normal strain energy density.

Kurzfassung

Im vorliegenden Beitrag werden Berechnungen zur Lebensdauer von Aluminiumschweißverbindungen (Rohr-Rohr- und Rohr-Flansch-Verbindungen) unter reiner Biegung und unter einer Kombination von Biegung mit Torsion vorgestellt und mit experimentellen Ergebnissen verglichen. Um den multiachsialen Beanspruchungszustand auf eine uniachsiale Belastung zu reduzieren, wurde ein ergiebasiertes Kriterium in der kritischen Ebene angewendet. Die besten Ergebnisse wurden erzielt, indem das Kriterium der maximalen Scher-Verformungsenergiedichte in der kritischen Ebene genutzt wurde, um die äquivalente lokale Spannungsamplitude für die Rohr-Rohr-Schweißungen zu berechnen, und zwar für beides, proportionale und nicht-proportionale Biegung mit Torsion. Für die Rohr-Flansch-Verbindungen unter proportionaler und nicht-proportionaler Biegung mit Torsion wurden die besten Resultate erreicht, indem das Kriterium der maximalen Scherung und der Normaldehnungsenergiedichte angewendet wurde.


Dr hab. Eng. Tadeusz Lagoda studied mechanical engineering at the Technical University of Opole, Poland and completed 1989 with MSc. Since 1989 he has been working at this University. He completed his PhD thesis at the Technical Univeristy of Opole in 1996 and since then has been Professor at Technical University of Wroclaw. Now, he is working as professor of the Technical University of Opole, Poland in the Faculty of Mechanics and Department of Mechanics and Machine Designe.

Dipl.-Ing. Martin Küppers studied mechanical engineering at Technical University of Clausthal, Germany, and finished his MSc in Engineering in 1996 (Dipl.-Ing. Maschinenbau). Since 1996 he has been working as scientific engineer and project leader at the Fraunhofer Institute for Structural Durability and System Reliability LBF in Darmstadt, Germany, in the Department “Componentrelated material behavior”.

*

Contribution to the 7th International Conference on Biaxial/Multiaxial Fatigue and Fracture (7ICBMFF)


References

1 Macha, E.; Sonsino, C. M.: Energy Criteria of Multiaxial Fatigue Failure, Fatigue Fract. Engng. Mater. Struct.22 (2000) pp. 1053107010.1046/j.1460-2695.1999.00220.xSuche in Google Scholar

2 L/agoda, T.; Macha, E.: A Review of High-Cycle Fatigue Models under Non-Proportional Loadings, In: Fracture from Defects, Proc. ECF-12, Sheffield, Eds. Brown, M. W., de los Rios, E. R. and Miller, K. J., EMAS I (1998) pp. 7378Suche in Google Scholar

3 L/agoda, T.; Macha, E.: Generalization of Energy Multiaxial Cyclic Fatigue Criteria to Random Loadings, Multiaxial Fatigue and Deformation: Testing and Prediction, ASTM STP 1387, Kalluri, S. and Bonacuse, P. J. (Eds.), American Society for Testing and Materials, West Conshohocken, PA (2000) pp. 17319010.1520/STP13504SSuche in Google Scholar

4 L/agoda, T.; Macha, E.; Be¸dkowski, W.: A Critical Plane Approach Based on Energy Concepts: Application to Biaxial Random Tension-Compression High-Cycle Fatigue Regime, Int. J. Fatigue21 (1999) pp. 43144310.1016/S0142-1123(99)00003-1Suche in Google Scholar

5 L/agoda, T.; Macha, E.: Energy Approach to Fatigue Life Estimation under Combined Tension with Torsion, 7th Summer School of Fracture – Pokrzywna, Scientific Papers of Technical University of Opole, Z. 67, Opole Nr 269 (2001) pp. 163182Suche in Google Scholar

6 L/agoda, T.; Macha, E.; Sakane, M.: Correlation of Biaxial Low-Cycle Fatigue Lives of SUS304 Stainless Steel with Energy Parameter in Critical Plane at 923 K, In: 6th ISCCP – Bial/owiez·a, A. Jakowluk and Z. Mróz (Eds.), Technical University of Bialystok (1998) pp. 343356Suche in Google Scholar

7 L/agoda, T.: Energy Models for Fatigue Life Estimation under Random Loading – Part I – The Model Elaboration, Int. J. Fatigue23 (2001) pp. 46748010.1016/S0142-1123(01)00016-0Suche in Google Scholar

8 L/agoda, T.: Energy Models for Fatigue Life Estimation under Random Loading – Part II – Verification of the Model, Int. J. Fatigue23 (2001) pp. 48148910.1016/S0142-1123(01)00017-2Suche in Google Scholar

9 L/agoda, T.; Macha, E.: Fatigue Lives under Biaxial Random Loading According to Normal Stress, Strain and Strain Energy Density in the Critical Plane, Life Assesssment and Management for Structural Components, Proceedings of the Conference, Troshenko, V. T. (Ed.), Kijów (2000) pp. 119124Suche in Google Scholar

10 Macha, E.: Simulation Investigations of the Position of Fatigue Fracture Plane in Materials with Biaxial Loads, Mat.-wiss. u. Werkstofftech. VCH Verlagsgesellschaft mbH, D-6940 Weinheim (Germany) 20, Heft4 (1989) pp. 132136; Heft 5 (1989) pp. 159164Suche in Google Scholar

11 L/agoda, T.; Macha, E.; Dragon, A.; Petit, J.: Influence of Correlations Between Stresses on Calculated Fatigue Life on Machine Elements, Int. J. Fatigue18 (1996) pp. 54755510.1016/S0142-1123(96)00025-4Suche in Google Scholar

12 Sonsino, C. M.; Kueppers, M.: Festigkeitsverhalten von Aluminiumschweißverbindungen unter mehrachsigen Spannungszuständen, AiF/DVS-Forschungsvorhaben Nr.10731 (1996-2000), Fraunhofer-Institut für Betriebsfestigkeit (LBF), Darmstadt (2001) (not published)Suche in Google Scholar

13 Sonsino, C. M., Kueppers, M.: Fatigue Behaviour of Welded Aluminium under Multiaxial Loading, Proc. 6th Int. Conference on Biaxial/Multiaxial Fatigue and Fracture, Lisboa, Portugal 2001, ESIS, Vol. I, 2001, pp. 5764Suche in Google Scholar

Published Online: 2013-05-28
Published in Print: 2006-03-01

© 2006, Carl Hanser Verlag, München

Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.100718/html
Button zum nach oben scrollen