Home A constitutive high cycle fatigue damage model – based on the interaction between microplasticity and local damage*
Article
Licensed
Unlicensed Requires Authentication

A constitutive high cycle fatigue damage model – based on the interaction between microplasticity and local damage*

  • Laurent Flacelière , Franck Morel and A. Dragon
Published/Copyright: May 28, 2013
Become an author with De Gruyter Brill

Abstract

This paper presents a new model that accounts, on a local scale, for the coupling between plasticity due to gliding in shear bands and damage occurring when the accumulated plastic strain has reached a threshold value. The irreversible thermodynamics with internal state variables is employed to keep a middle way between extensive description of plastic and damage flow and application of accessibility requirements. Plasticity and damage are governed by their proper complementary rules (yield functions and potentials). At the same time, a coupling occurs between the damage variable and the hardening parameters. A large experimental database relative to the fatigue behavior of a mild steel C36 submitted to different loading modes (tension, torsion, combined proportional tension and torsion) proves the efficiency of such a model. The prediction of Wöhler curves for cyclic complex stress states can be readily done, but the main feature of this approach is to ensure a clear link between mesoscopic parameters like the hardening behavior of individual grains and the subsequent local damage.

Kurzfassung

Der vorliegende Beitrag präsentiert ein neues Modell das auf lokaler Ebene auf die Koppelung zwischen der Plastizität infolge Gleitens in Scherbändern mit der Schädigung abzielt und die auftritt, wenn die akkumulierte plastische Dehnung einen Schwellwert erreicht hat. Es wurde die irreversible Thermodynamik innerer Zustandsvariablen angewendet, um einen Mittelweg zwischen extensiven Beschreibungen der Fließprozesse und der Anwendung von Abschätzkriterien zu wählen. Plastizität und Schädigung werden durch geeignete komplementäre Regeln (Streckfuntionen und -potentiale) bestimmt. Die zur selben Zeit auftretende Koppelung zwischen den Schädigungsvariablen und den Härtewerten wurde ebenfalss berücksichtigt.


Prof. Dr. Laurent Flacelière is working at the Laboratoire de Mécanique et de Physique des Matériaux, Futurscope, France.

Dr. Franck Morel was born in 1967. After an engineering diploma of C.E.S.T.I. (SupMéca) obtained in 1991, he prepared a PhD thesis at Poitiers (LMPM) about multiaxial loading under variable amplitude loading (defended in 1996). Since 1997, he is assistant professor first in Poitiers and now in Angers (ENSAM). His main fields of research are fatigue under complex loading and the influence of the material processing on the fatigue properties.

*

Contribution to the 7th International Conference on Biaxial/Multiaxial Fatigue and Fracture (7ICBMFF)


References

1 Kachanov, L. M.: Time of the rupture process under creep conditions. Isv. Akad. Nauk., Otd Tekh. Nauk., 1958. 8: p. 2631Search in Google Scholar

2 Chaboche, J. L.: Une loi différentielle d'endommagement de fatigue avec cumulation non-linéaire. Rev. Fr. Méc., 1974. 50–51: p. 7182Search in Google Scholar

3 Lemaitre, J.; Sermage, J. P.; Desmorat, R.: A two scale damage concept applied to fatigue. International Journal of Fracture, 1999: p. 678110.1023/A:1018641414428Search in Google Scholar

4 Abdul-Latif, A.; Saanouni, K.: Damaged anelastic behaviour of FCC polycrystalline metals with micromechanical approach. International Journal of Damage mechanics, 1994. 3: p. 23725910.1177/105678959400300301Search in Google Scholar

5 Seweryn, A.; Mroz, Z.: On the criterion of damage evolution for variable multiaxial stress states. Solids Structures, 1997. 35 (14): p. 1586161610.1016/S0020-7683(97)00121-2Search in Google Scholar

6 Bataille, J.; Kestin, J.: L'interprétation physique de la thermodynamique rationnelle. Journal de Mécanique, 1975. 14 (2): p. 365384Search in Google Scholar

7 McDowell, D. L.: Damage mechanics end metal fatigue: a discriminating perspective. International Journal of Damage mechanics, 1999. 8: p. 37640310.1177/105678959900800406Search in Google Scholar

8 Prager, W.: Non Isothermal Plastic Deformation. Koninlijke Nederlandse Akademie van Wetenschapen, 1958. 61: p. 176182Search in Google Scholar

9 Hayakawa, K.; Murakami, S.: Space of damage conjugate force and damage potential of elastic-plastic-damage materials, in Damage mechanics in engineering materials, Voyiadjis, G. Z.; Ju, J.-W. W.; Caboche, J. L., Editors. 1998, Elsevier science B.V.10.1016/S0922-5382(98)80033-0Search in Google Scholar

Published Online: 2013-05-28
Published in Print: 2006-03-01

© 2006, Carl Hanser Verlag, München

Downloaded on 28.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.100714/html
Scroll to top button