Synthesis and Solution Properties of New Polysiloxane Bola Surfactants Containing Carbohydrate
-
Xiaojun Zeng
Abstract
Three polysiloxane bola surfactants containing carbohydrate (ATPS-LA) were synthesized using a two-step method. Structure characterization was performed by infrared spectroscopy (FT-IR) and proton nuclear magnetic resonance spectroscopy (1H NMR). Their surface activities and aggregation properties in aqueous solution were investigated by surface tension measurements and transmission electron microscopy (TEM). The results indicated that these three surfactants have much higher surface activity than those of conventional hydrocarbon bola surfactants, such as sodium eicosanedioate, in aqueous solution, and they can self-assemble into spherical micelles with average diameters in the range from 100 to 600 nm.
Kurzfassung
Drei Polysiloxan-Bolatenside, die Kohlenhydrate enthalten (ATPS-LA) wurden synthetisiert in einem Zweistufenverfahren. Für die Strukturcharakterisierung wurden die FT-IR-Spektroskopie und die 1H-NMR herangezogen. Ihre Oberflächen- und Aggregationseigenschaften wurden mit Hilfe von Messungen der Oberflächenspannung und der Transmissionselektronenmikroskopie (TEM) untersucht. Die Ergebnisse machen deutlich, dass diese drei Tenside eine sehr viel höhere Oberflächenaktivität in wässriger Lösung aufweisen als die konventionellen Kohlenwasserstoff-Bolatenside wie z.B. Natriumeicosandioat. Des Weiteren sind sie imstande, sich in Kugelmizellen mit durchschnittlichen Durchmessern zwischen 100 nm bis 600 nm zu organisieren.
References
1. Rosen, M. J.: Surfactants and interfacial phenomena. (Four Ed) Wiley, New York, 2004. DOI: 10.1002/9781118228920.ch13.Suche in Google Scholar
2. Fuhrhop, J. H. and Wang, T. Y.: Bolaamphiphiles. Chem. Revi.104 (2004) 2901–2938. DOI: 10.1021/cr030602bSuche in Google Scholar PubMed
3. Mullerfahrnow, A., Saenger, W., Fritsch, D., Schneider, P. and FuhrhopJ. H.: Molecular and crystal structure of the bola-amphiphile N-[8-(D-gluconamido)octyl]-D-gluconamide. Carbohydr. Res.242 (1993) 11–20. DOI: 10.1016/0008-6215(93)80018-ASuche in Google Scholar
4. Benvegnu, T., Brard, M. and Plusquellec, D.: Archaeabacteria bipolar lipid analogues: structure, synthesis and lyotropic properties. Curr. Opin. Colloid Interface Sci.8 (2004) 469–479. DOI: 10.1016/j.cocis.2004.01.005Suche in Google Scholar
5. Franceschi, S., Andreu, V., de Viguerie, N., Riviere, M., Lattes, A. and Moisand, A.: Synthesis and aggregation behavior of two-headed surfactants containg the urocanic acid moiety. New J. Chem.22 (1998) 225–231. DOI: 10.1039/A708326BSuche in Google Scholar
6. Fuhrhop, J. H., David, H. H., Mathieu, J., Liman, U., Winter, H. J. and Bockema, E.: Bolaamphiphiles and monolayer lipid membranes made from 1,6,19,24-tetraoxa-3,21-cyclohexatriacontadiene-2,5,20,23-tetrone. J. Am. Chem. Soc.108 (1986) 1785–1791. DOI: 10.1021/ja00268a013Suche in Google Scholar
7. Denoyelle, S., Polidori, A., Brunelle, M., Vuillaume, P. Y., Laurent, S., Elazhary, Y. and Pucci, B.: Synthesis and preliminary biological studies of hemifluorinated bifunctional bolaamphiphilies designed for gene delivery. New J. Chem.30 (2006) 629–646. DOI: 10.1039/B513944ASuche in Google Scholar
8. Hill, R. M.: Silicone surfactants. Marcel Dekker, New York (1999). DOI: 10.1002/1099-0739(200007)14:7<397::AID-AOC4>3.0.CO;2-2Suche in Google Scholar
9. Wang, G. Y., Du, Z. P., Zhang, W. and Cao, Q. Y.: Synthesis and surface properties of trisiloxane-modified oligo(ethylene oxide). Tenside Surfactant Det.46 (2009) 214–217. DOI: 10.3139/113.110026Suche in Google Scholar
10. Berson, S., Viet, D. S., Driguez, H., Fleury, E. and Hamaide, T.: Synthesis of new cellobiose-based glycopolysiloxanes and their use as polymer stabilizers in miniemulsion polymerisation. Macromol. Chem. Phys.209 (2008) 1814–1825. DOI: 10.1002/macp.200800194Suche in Google Scholar
11. Zeng, X. J., Lu, Z. P. and Liu, Y.: Synthesis and solution properties of novel sugar-based polysiloxane surfactants. J. Surfactants Deterg.16 (2013) 131–137. DOI: 10.1007/s11743-012-1369-5Suche in Google Scholar
12. Henkensmeier, D., Abele, B. C., Candussio, A. and Thiem, J.: Synthesis and characterisation of terminal carbohydrate modified poly(dimethyl siloxane)s. Macromol. Chem. Phys.205 (2004) 1851–1857. DOI: 10.1002/macp.200400004Suche in Google Scholar
13. Henkensmeier, D., Abele, B. C., Candussio, A. and Thiem, J.: Synthesis, characterisation and degradability of polyamides derived from aldaric acids and chain end functionalised polydimethylsiloxanes. Polymer45 (2004) 7053–7059. DOI: 10.1016/j.polmer.2004.07.078Suche in Google Scholar
14. Henkensmeier, D., Abele, B. C., Candussio, A. and Thiem, J.: Synthesis of carbohydrate-segmented polydimethylsiloxanes by hydrosilylation. J. Polym. Sci. Pol. Chem.43 (2005) 3814–3822. DOI: 10.1002/pola.20852Suche in Google Scholar
15. Iwakiri, N., Nishikawa, T., Kaneko, Y. and Kadokawa, J. I.: Synthesis of amphiphilic polysiloxanes and their properties for formation of nano-aggregates. Colloid Polym. Sci.287 (2009) 577–582. DOI: 10.1007/s00396-009-2005-4Suche in Google Scholar
16. Ogawa, T.: Simplified synthesis of amphiphilic siloxanes with methyl gluconyl glycinate functionalities via transacetalation. Macromolecules36 (2003) 8330–8335. DOI: 10.1021/ma0301698Suche in Google Scholar
17. Ogawa, T.: Simplified synthesis of carbohydrate-functional siloxanes via transacetalation. I. glucose-functional siloxanes. J. Polym. Sci. Pol. Chem.41 (2003) 3336–3345. DOI: 10.1002/pola.10926Suche in Google Scholar
18. Racles, C. and Hamaide, T.: Synthesis and characterization of water soluble saccharide functionalized polysiloxanes and their use as polymer surfactants for the stabilization of polycaprolactone nanoparticles. Macromol. Chem. Phys.206 (2005) 1757–1768. DOI: 10.1002/macp.200500139Suche in Google Scholar
19. Racles, C., Hamaide, T. and Ioanid, A.: Siloxane surfactants in polymer nanoparticles formulation. Appl. Organome. Chem.20 (2006) 235–245. DOI: 10.1002/aoc.1051Suche in Google Scholar
20. Zhou, C. H., Guan, R.F. and Feng, S. Y.: The preparation of a new polysiloxane copolymer with glucosylthioureylene groups on the side chains. Eur. Polym. J.40 (2004) 165–170. DOI: 10.1016/j.eurpolymj.2003.09.013Suche in Google Scholar
21. Du, Z. P., Wang, L., Wang, G. Y. and Wang, S. J.: Synthesis, surface and aggregation properties of glucosamide-grafted amphiphilic glycopolysiloxanes. Colloid Surface A381 (2011) 55–60. DOI: 10.1016/j.colsurfa.2011.03.004Suche in Google Scholar
22. Wu, Y. Z. and Feng, S. Y.: Viscosity-molecular weight relationship for aminopropyl-terminated poly(dimethylsiloxane). J. Appl. Poly.80 (2001) 975–978. DOI: 10.1002/app.1179Suche in Google Scholar
23. Basu, S.: Molecular weight of nylon by end-group titration. J. Poly. Sci.5 (1950) 975–978. DOI: 10.1002/pol.1950.120050611Suche in Google Scholar
24. Bakshi, M. S., Singh, J. and Kaur, G.: Antagonistic mixing behavior of cationic gemini surfactants and triblock polymers in mixed micelles. J. Colloid Interf. Sci.285 (2005) 403–412. DOI: 10.1016/j.jcis.2004.11.013Suche in Google Scholar PubMed
25. Bakshi, M. S. and SinghK.: Synergistic interactions in the mixed micelles of cationic gemini with zwitterionic surfactants: Fluorescene and Krafft temperature studies. J. Colloid Interf. Sci.287 (2005) 288–297. DOI: 10.1016/j.jcis.2005.01.099Suche in Google Scholar PubMed
26. Chung, D. and Lim, J. C.: Study on the effect of structure of polydimethylsiloxane grafted with polyethyleneoxide on surface activities. Colloid Surface A336 (2009) 35–40:. DOI: 10.1016/j.colsurfa.2008.11.020Suche in Google Scholar
27. Wang, A., Jiang, L., Mao, G. and Liu, Y.: Direct force measurement of comb silicone surfactants in alcoholic media by atomic force microscopy. J. Colloid Interf. Sci.242 (2001) 337–345. DOI: 10.1006/jcis.2001.7822Suche in Google Scholar
28. Li, Y. M., Zhang, H. X., Bao, M. and Chen, Q. G.: Aggregation behavior of surfactants with different molecular structures in aqueous solution: DPD simulation study. J. Disper. Sci. Technol.33 (2011) 1437–1443. DOI: 10.1080/01932691.2011.620897Suche in Google Scholar
29. Zhang, D. M., Liu, F. L., Hao, X., Guo, Y. Q. and ChenY. S.: Large vesicles of ethylenediaminediacetic in ethanol due to hydrogen bonding. Colloid Surface A415 (2012) 167–173. DOI: 10.1016/j.colsurfa.2012.09.042Suche in Google Scholar
30. Deleu, M., Damez, C., Gatard, S., Nott, K., Paquot, M. and BouquillonS.: Synthesis and physico-chemical characterization of bolaamphiphiles derived from alkenyl D-xylosides. New J. Chem.35 (2011) 2258–2266. DOI: 10.1039/C1NJ20158ASuche in Google Scholar
31. Zhang, H. C., An, W., Liu, Z. N., Hao, A. Y., HaoJ. C., Shen, J., Zhao, X. H., Sun, H. Y. and SunL. Z.: Redox-responsive vesicles prepared from supramolecular cyclodextrin amphiphiles. Carbohyd. Res.345 (2010) 87–96. DOI: 10.1016/j.carres.2009.10.022Suche in Google Scholar PubMed
32. Liu, M., Fu, Z. S., Wang, Q., Xu, J. T., and Fan, Z. Q.: Study of amphiphilic poly(1-dodecene-co-para-methylstyrene)-graft-poly(ethylene glycol). Part II: Preparation and micellization behavior of the amphiphilic copolymers. Eur. Polym. J.44 (2008) 4122–4128. DOI: 10.1016/j.eurpolymj.2008.09.006Suche in Google Scholar
© 2014, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Special Theme: Green Surfactants – Synthesis, Properties, Performance and Application
- Novel Cationic Gemini Surfactants and Methods for Determination of Their Antimicrobial Activity – Review
- Sophorolipids Synthesized Using Non-Traditional Oils with Glycerol and Studies on Their Surfactant Properties with Synthetic Surfactant
- Rhamnolipids Production by a Pseudomonas eruginosa LBI Mutant: Solutions and Homologs Characterization
- Application of Biosurfactant Surfactin on Copper Ion Removal from Sand Surfaces with Continuous Flushing Technique
- Synthesis and Properties of a Series of CO2 Switchable Gemini Imidazolium Surfactants
- Phase Behavior and Solubilization of Microemulsion Systems Containing Imidazolium Type Surfactant CnmimBr and Butyric Acid as Cosurfactant
- Synthesis and Solution Properties of New Polysiloxane Bola Surfactants Containing Carbohydrate
- Syntheses and Properties of Novel Ionic Twin-tail Trisiloxane Surfactants
- Micellar Encapsulation of Some Polycyclic Aromatic Hydrocarbons by Glucose Derived Non-Ionic Gemini Surfactants in Aqueous Medium
- Environmental Chemistry
- Removal of Non-Ionic Surfactants in an Activated Sludge Sewage Treatment Plant
- Cleaning Technology
- Impact of Artificial UV-Light on Optical and Protective Effects of Cotton After Washing with Detergent Containing Fluorescent Compounds
- Simulating Consumer-Like Air Drying of Dishes via Thermal Drying Process
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Special Theme: Green Surfactants – Synthesis, Properties, Performance and Application
- Novel Cationic Gemini Surfactants and Methods for Determination of Their Antimicrobial Activity – Review
- Sophorolipids Synthesized Using Non-Traditional Oils with Glycerol and Studies on Their Surfactant Properties with Synthetic Surfactant
- Rhamnolipids Production by a Pseudomonas eruginosa LBI Mutant: Solutions and Homologs Characterization
- Application of Biosurfactant Surfactin on Copper Ion Removal from Sand Surfaces with Continuous Flushing Technique
- Synthesis and Properties of a Series of CO2 Switchable Gemini Imidazolium Surfactants
- Phase Behavior and Solubilization of Microemulsion Systems Containing Imidazolium Type Surfactant CnmimBr and Butyric Acid as Cosurfactant
- Synthesis and Solution Properties of New Polysiloxane Bola Surfactants Containing Carbohydrate
- Syntheses and Properties of Novel Ionic Twin-tail Trisiloxane Surfactants
- Micellar Encapsulation of Some Polycyclic Aromatic Hydrocarbons by Glucose Derived Non-Ionic Gemini Surfactants in Aqueous Medium
- Environmental Chemistry
- Removal of Non-Ionic Surfactants in an Activated Sludge Sewage Treatment Plant
- Cleaning Technology
- Impact of Artificial UV-Light on Optical and Protective Effects of Cotton After Washing with Detergent Containing Fluorescent Compounds
- Simulating Consumer-Like Air Drying of Dishes via Thermal Drying Process