Phase Behavior and Solubilization of Microemulsion Systems Containing Imidazolium Type Surfactant CnmimBr and Butyric Acid as Cosurfactant
-
Jinling Chai
Abstract
The phase behavior and solubilization of two microemulsion systems 1-alkyl-3-methylimidazolium bromide (CnmimBr, n = 12,14,16)/butyric acid/hexane/brine (5% NaCl) and CnmimBr/1-butanol/hexane/brine (5% NaCl) were studied and compared. The physico-chemical parameters, such as the solubility (∊B) of the cosurfactant, the mass fraction of the cosurfactant in the interfacial layer (AS), and the solubilization ability (SP*) of the two microemulsion systems were calculated and discussed. As the carbon chain length of CnmimBr molecules increases, SP* increases, and the difference of SP* values between the two microemulsion systems is reduced. The effects of aqueous and oleic phases and temperatures on the phase behavior and solubilization of C14mimBr/butyric acid/alkane/aqueous phase microemulsion systems were also discussed.
Kurzfassung
Das Phasenverhalten und die Solubilisierung von zwei Mikroemulsionen bestehend aus 1-Alkyl-3-methylimidazoliumbromid (CnmimBr, n = 12, 14, 16)/Butansäure/Hexan/wässrige Salzlösung (5% NaCl) und CnmimBr/1-Butanol/Hexan/wässrige Salzlösung (5% NaCl) wurden studiert und miteinander verglichen. Die physikalisch-chemischen Parameter, wie die Löslichkeit des Co-Tensids (∊B), der Massenbruch des Co-Tensids in der Grenzfläche (AS) und die Lösefähigkeit (SP*) der beiden Mikroemulsionen wurden bestimmt und diskutiert. Mit zunehmender Kohlenstoffkettenlänge des CnmimBr-Moleküls, nimmt SP* zu und die Differenz zwischen den SP*-Werten der beiden Mikroemulsionen verringert sich. Der Einfluss der wässrigen und öligen Phase und der der Temperatur auf das Phasenverhalten und die Solubilisierung von Mikroemulsionen des Typs C14mimBr/Butansäure/Alkan/wässrige Phase wurden ebenfalls diskutiert.
References
1. Stubenrauch, C. (ed.): Microemulsions – Background, New Concepts, Applications, Perspectives Blackwell Publishing Ltd. (2009) 1.Search in Google Scholar
2. Gradzielski, M.: Curr. Opin. Colloid Interface Sci.13 (2008) 263. DOI: 10.1016/j.cocis.2007.10.006.Search in Google Scholar
3. Moreira, L. A. and Firoozabadi, A.: Langmuir.25 (2009) 12101. DOI: 10.1021/la9018426.Search in Google Scholar
4. Stubenrauch, C., Paeplow, B. and Findenegg, G. H.: Langmuir.13 (1997) 3652. DOI: 10.1021/la970180z.Search in Google Scholar
5. Cho, Y. H., Kim, S., Bae, E. K., Mok, C. K. and Park, J.: J. Food Sci.73 (2008) 115. DOI: 10.1111/j.1750-3841.2008.00688.x.Search in Google Scholar
6. Moraes, R. P., Zavecs, I., Lauvernier, P., Smeets, N. M. B., Hutchinson, R. A., and McKenna, T. F. L.: J. Polym. Sci. Part A50 (2012) 944. DOI: 10.1002/pola.25850.Search in Google Scholar
7. Spernath, A., Aserin, A. and Garti, N.: J. Colloid Interface Sci.299 (2006) 900. DOI: 10.1016/j.jcis.2006.02.024.Search in Google Scholar
8. Lai, W. C. and Krtes, A. S.: Colloids Surf.4 (1982) 379. DOI: 10.1016/0166-6622(82)80030-9.Search in Google Scholar
9. Li, G. Z., Wang, X. W., Zheng, L. Q., and Li, F.: J. Shandong Univ.27 (1992) 337.Search in Google Scholar
10. Lohateeraparpa, P., Wilairuengsuwan, P., Saiwana, C., Sabatinib, D. A. and Harwellc, J. H.: J. Surfactants Deterg.6 (2003) 15. DOI: 10.1007/s11743-003-0243-8.Search in Google Scholar
11. Chaghi, R., Menorval, L. C. D., Charnay, C. and Zajac, J.: J. Colloid Interface Sci.344 (2010) 402. DOI: 10.1016/j.jcis.2009.12.064.Search in Google Scholar
12. Li, X. Q., Chai, J. L., Shang, S. C., Li, H. L., Lu, J. J., Yang, B. and Wu, Y. T.: J. Chem. Eng. Data55 (2010) 3224. DOI: 10.1021/je100060t.Search in Google Scholar
13. Kunz, W., Zemb, T. and Harrar, A.: Curr. Opin. Colloid Interface Sci.17 (2012) 205. DOI: 10.1016/j.cocis.2012.03.002.Search in Google Scholar
14. Vany'ur, R., Bicz'ok, L'. and Miskolczy, Z.: Colloids Surf. A299 (2007) 256. DOI: 10.1016/j.colsurfa.2006.11.049.Search in Google Scholar
15. Geng, F., Liu, J., Zheng, L. Q., Yu, L., Li, Z., Li, G. Z. and Tung, C. H.: J. Chem. Eng. Data55 (2010) 147. DOI: 10.1021/je900290w.Search in Google Scholar
16. Dong, B., Li, N., Zheng, L. Q., Yu, L. and Tohru, I.: Langmuir23 (2007) 4178. DOI: 10.1021/la0633029.Search in Google Scholar
17. Fang, D., Cheng, J., Gong, K., Shi, Q. R., Zhou, X. L., and Liu, Z. L.: J. Fluorine Chem.129 (2008) 108. DOI: 10.1016/j.jfluchem.2007.09.004.Search in Google Scholar
18. Kunieda, H. and Shinoda, K.: J. Colloid Interface Sci.107 (1985) 129. DOI: 10.1016/0021-9797(85)90156-0.Search in Google Scholar
19. Chai, J. L., Wu, Y. T., Li, X. Q., Yang, B., Chen, L. S., Shang, S. C. and Lu, J. J.: J. Chem. Eng. Data56 (2011) 48. DOI: 10.1021/je1007444.Search in Google Scholar
20. Chai, J. L., Zhao, J. R., Gao, Y. H., Yang, X. D. and Wu, C. J.: Colloids Surf. A302 (2007) 31. DOI: 10.1016/j.colsurfa.2007.01.037.Search in Google Scholar
21. Yang, X. D., Li, H. L., Chai, J. L., Gao, Y. H., Chen, J. F. and Lou, A. J.: J. Colloid Interface Sci.320 (2008) 283. DOI: 10.1016/j.jcis.2007.12.043.Search in Google Scholar
22. John, A. C., and Rakshit, A. K.: Colloids Surf. A95 (1995) 201. DOI: 10.1016/0927-7757(94)03014-QSearch in Google Scholar
© 2014, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Special Theme: Green Surfactants – Synthesis, Properties, Performance and Application
- Novel Cationic Gemini Surfactants and Methods for Determination of Their Antimicrobial Activity – Review
- Sophorolipids Synthesized Using Non-Traditional Oils with Glycerol and Studies on Their Surfactant Properties with Synthetic Surfactant
- Rhamnolipids Production by a Pseudomonas eruginosa LBI Mutant: Solutions and Homologs Characterization
- Application of Biosurfactant Surfactin on Copper Ion Removal from Sand Surfaces with Continuous Flushing Technique
- Synthesis and Properties of a Series of CO2 Switchable Gemini Imidazolium Surfactants
- Phase Behavior and Solubilization of Microemulsion Systems Containing Imidazolium Type Surfactant CnmimBr and Butyric Acid as Cosurfactant
- Synthesis and Solution Properties of New Polysiloxane Bola Surfactants Containing Carbohydrate
- Syntheses and Properties of Novel Ionic Twin-tail Trisiloxane Surfactants
- Micellar Encapsulation of Some Polycyclic Aromatic Hydrocarbons by Glucose Derived Non-Ionic Gemini Surfactants in Aqueous Medium
- Environmental Chemistry
- Removal of Non-Ionic Surfactants in an Activated Sludge Sewage Treatment Plant
- Cleaning Technology
- Impact of Artificial UV-Light on Optical and Protective Effects of Cotton After Washing with Detergent Containing Fluorescent Compounds
- Simulating Consumer-Like Air Drying of Dishes via Thermal Drying Process
Articles in the same Issue
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Special Theme: Green Surfactants – Synthesis, Properties, Performance and Application
- Novel Cationic Gemini Surfactants and Methods for Determination of Their Antimicrobial Activity – Review
- Sophorolipids Synthesized Using Non-Traditional Oils with Glycerol and Studies on Their Surfactant Properties with Synthetic Surfactant
- Rhamnolipids Production by a Pseudomonas eruginosa LBI Mutant: Solutions and Homologs Characterization
- Application of Biosurfactant Surfactin on Copper Ion Removal from Sand Surfaces with Continuous Flushing Technique
- Synthesis and Properties of a Series of CO2 Switchable Gemini Imidazolium Surfactants
- Phase Behavior and Solubilization of Microemulsion Systems Containing Imidazolium Type Surfactant CnmimBr and Butyric Acid as Cosurfactant
- Synthesis and Solution Properties of New Polysiloxane Bola Surfactants Containing Carbohydrate
- Syntheses and Properties of Novel Ionic Twin-tail Trisiloxane Surfactants
- Micellar Encapsulation of Some Polycyclic Aromatic Hydrocarbons by Glucose Derived Non-Ionic Gemini Surfactants in Aqueous Medium
- Environmental Chemistry
- Removal of Non-Ionic Surfactants in an Activated Sludge Sewage Treatment Plant
- Cleaning Technology
- Impact of Artificial UV-Light on Optical and Protective Effects of Cotton After Washing with Detergent Containing Fluorescent Compounds
- Simulating Consumer-Like Air Drying of Dishes via Thermal Drying Process