Startseite Magnetic mixed matrix membranes in air separation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Magnetic mixed matrix membranes in air separation

  • Aleksandra Rybak EMAIL logo , Gabriela Dudek , Monika Krasowska , Anna Strzelewicz , Zbigniew Grzywna und Petr Sysel
Veröffentlicht/Copyright: 24. Juni 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Ethylcellulose (EC) or linear polyimide (LPI) and magnetic neodymium powder particles MQP-14-12 were used for the preparation of inorganic-organic hybrid membranes. For all the membranes, N2, O2 and air permeability were examined. Mass transport coefficients were determined using the Time Lag System based on dynamic experiments in a constant pressure system. The results showed that the membrane permeation properties were improved by the addition of magnetic neodymium particles to the polymer matrix. The magnetic ethylcellulose and polyimide membranes exhibited higher gas permeability and diffusivity, while their permeability selectivity and solubility were either unchanged or slightly increased. Polyimide mixed matrix membranes were characterised by a higher thermal and mechanical stability, larger filler loading, better magnetic properties and reasonable selectivity in the air separation.

[1] Baker, R. W. (2004). Chapter 1: Overview of membrane science and technology. In Membrane technology and applications (2nd ed., pp. 1–14). Chichester, UK: Wiley. DOI: 10.1002/0470020393.ch1. http://dx.doi.org/10.1002/0470020393.ch110.1002/0470020393.ch1Suche in Google Scholar

[2] Balkus, K. J., Cattanach, K., Musselsman, I. H., & Ferraris, J. P. (2002). Selective matrimid membranes containing mesoporous molecular sieves. MRS Proceedings, 752, 91–96. DOI: 10.1557/proc-752-aa4.3. http://dx.doi.org/10.1557/PROC-752-AA4.310.1557/PROC-752-AA4.3Suche in Google Scholar

[3] Dudek, G., Turczyn, R., Strzelewicz, A., Rybak, A., Krasowska, M., & Grzywna, Z. J. (2012). Preparation and characterization of iron oxides-polymer composite membranes. Separation Science and Technology, 47, 1390–1394. DOI: 10.1080/01496395.2012.672519. http://dx.doi.org/10.1080/01496395.2012.67251910.1080/01496395.2012.672519Suche in Google Scholar

[4] Friess, K., Sysel, P., Minko, E., Hauf, M., Vopička, O., Hynek, V., Pilnáček, K., & Šípek, M. (2010). Comparison of transport properties of hyperbranched and linear polyimides. Desalination and Water Treatment, 14, 165–169. DOI: 10.5004/dwt.2010.1022. http://dx.doi.org/10.5004/dwt.2010.102210.5004/dwt.2010.1022Suche in Google Scholar

[5] Goh, P. S., Ismail, A. F., Sanip, S. M., Ng, B. C., & Aziz, M. (2011). Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Separation and Purification Technology, 81, 243–264. DOI: 10.1016/j.seppur.2011.07.042. http://dx.doi.org/10.1016/j.seppur.2011.07.04210.1016/j.seppur.2011.07.042Suche in Google Scholar

[6] Grzywna, Z. J., & Frisch, H. L. (1984). An application of WKB approximation to transient diffusion in inhomogeneous membranes. Part 3: Permeation. Polish Journal of Chemistry, 58, 227–244. Suche in Google Scholar

[7] Grzywna, Z. J., Borys, P., Rybak, A., Pawełek, K., & Strzelewicz, A. (2010). On the air enrichment by magnetic membranes. In Proceedings of the XXV International Symposium on Physicochemical Methods of Separations Ars Separatoria, July 4–7, 2010 (pp. 15–21). Toruń, Poland: Nicolaus Copernicus University in Toruń. Suche in Google Scholar

[8] Hradil, J., Sysel, P., BroŽová, L., Kovářová, J., & Kotek, J. (2007). Heterogeneous membranes based on a composite of a hypercrosslinked microparticle adsorbent and polyimide binder. Reactive and Functional Polymers, 67, 432–441. DOI: 10.1016/j.reactfunctpolym.2007.02.004. http://dx.doi.org/10.1016/j.reactfunctpolym.2007.02.00410.1016/j.reactfunctpolym.2007.02.004Suche in Google Scholar

[9] Huang, M. R, Li, X. G., & Lin, G. (1995). Air separation properties and stabilities of blend membranes of liquid crystals with ethyl cellulose. Separation Science and Technology, 30, 449–460. DOI: 10.1080/01496399508013882. http://dx.doi.org/10.1080/0149639950801388210.1080/01496399508013882Suche in Google Scholar

[10] Khulbe, K. C., Matsuura, T., & Noh, S. H. (1998). Effect of thickness of the PPO membranes on the surface morphology. Journal of Membrane Science, 145, 243–251. DOI: 10.1016/s0376-7388(98)00083-0. http://dx.doi.org/10.1016/S0376-7388(98)00083-010.1016/S0376-7388(98)00083-0Suche in Google Scholar

[11] Krasowska, M., Rybak, A., Dudek, G., Strzelewicz, A., Pawełek, K., & Grzywna, Z. J. (2012). Structure morphology problems in the air separation by polymer membranes with magnetic particles. Journal of Membrane Science, 415–416, 864–870. DOI: 10.1016/j.memsci.2012.06.005. http://dx.doi.org/10.1016/j.memsci.2012.06.00510.1016/j.memsci.2012.06.005Suche in Google Scholar

[12] Kruczek, B., & Matsuura, T. (1998). Development and characterization of homogeneous membranes de from high molecular weight sulfonated polyphenylene oxide. Journal of Membrane Science, 146, 263–275. DOI: 10.1016/s0376-7388(98)00120-3. http://dx.doi.org/10.1016/S0376-7388(98)00120-310.1016/S0376-7388(98)00120-3Suche in Google Scholar

[13] Kruczek, B., & Matsuura, T. (2000). Effect of metal substitution of high molecular weight sulfonated polyphenylene oxide membranes on their gas separation performance. Journal of Membrane Science, 167, 203–216. DOI: 10.1016/s0376-7388(99)00292-6. http://dx.doi.org/10.1016/S0376-7388(99)00292-610.1016/S0376-7388(99)00292-6Suche in Google Scholar

[14] Lee, H. J., Kim, D. P., Suda, H., & Haraya, K. (2006). Gas permeation properties for the post-oxidized polyphenylene oxide (PPO) derived carbon membranes: Effect of the oxidation temperature. Journal of Membrane Science, 282, 82–88. DOI: 10.1016/j.memsci.2006.05.006. http://dx.doi.org/10.1016/j.memsci.2006.05.00610.1016/j.memsci.2006.05.006Suche in Google Scholar

[15] Li, X. G., & Huang, M. R (1996). Water-casting ultrathin-film composite membranes for air separation. Separation Science and Technology, 31, 579–603. DOI: 10.1080/01496399608000706. http://dx.doi.org/10.1080/0149639960800070610.1080/01496399608000706Suche in Google Scholar

[16] Li, N. N., Fane, A. G., Winston Ho, W. S., & Matsuura, T. (2008). Advanced membrane technology and applications. Hoboken, NJ, USA: Wiley. DOI: 10.1002/9780470276280. http://dx.doi.org/10.1002/978047027628010.1002/9780470276280Suche in Google Scholar

[17] Mazid, M. A., & Matsuura, T. (1993). Membrane gas separation: A critical overview. Separation Science and Technology, 28, 2287–2296. DOI: 10.1080/01496399308019739. http://dx.doi.org/10.1080/0149639930801973910.1080/01496399308019739Suche in Google Scholar

[18] Michalov, J. (1989). Permeability of porous membrane. Chemical Papers, 43, 121–130. Suche in Google Scholar

[19] Minko, E., Sysel, P., Hauf, M., Brus, J., & Kobera, L. (2010). Synthesis and properties of hyperbranched polyimides combined with silica. Macromolecular Symposia, 295, 88–93. DOI: 10.1002/masy.200900159. http://dx.doi.org/10.1002/masy.20090015910.1002/masy.200900159Suche in Google Scholar

[20] Moore, T. T., & Koros, W. J. (2005). Non-ideal effects in organic-inorganic materials for gas separation membranes. Journal of Molecular Structure, 739, 87–98. DOI: 10.1016/j.molstruc.2004.05.043. http://dx.doi.org/10.1016/j.molstruc.2004.05.04310.1016/j.molstruc.2004.05.043Suche in Google Scholar

[21] Mulder, M. (1996). Basic principles of membrane technology. Dordrecht, The Netherlands: Kluwer Academic Publisher. http://dx.doi.org/10.1007/978-94-009-1766-810.1007/978-94-009-1766-8Suche in Google Scholar

[22] Noble, R. D., & Stern, S. A. (1995). Membrane separations technology: Principles and applications. Amsterdam, The Netherlands: Elsevier. Suche in Google Scholar

[23] Perez, E. V., Balkus, K. J., Ferraris, J. P., & Musselman, I. H. (2009). Mixed-matrix membranes containing MOF-5 for gas separations. Journal of Membrane Science, 328, 165–173. DOI: 10.1016/j.memsci.2008.12.006. http://dx.doi.org/10.1016/j.memsci.2008.12.00610.1016/j.memsci.2008.12.006Suche in Google Scholar

[24] Polotskaya, G. A., Penkova, A. V., Toikka, A. M., Pientka, Z., Brozova, L., & Bleha, M. (2007). Transport of small molecules through polyphenylene oxide membranes modified by fullerene. Separation Science and Technology, 42, 333–347. DOI: 10.1080/01496390600997963. http://dx.doi.org/10.1080/0149639060099796310.1080/01496390600997963Suche in Google Scholar

[25] Rybak, A., Grzywna, Z. J., & Kaszuwara, W. (2009a). On the air enrichment by polymer magnetic membranes. Journal of Membrane Science, 336, 79–85. DOI: 10.1016/j.memsci.2009.03.027. http://dx.doi.org/10.1016/j.memsci.2009.03.02710.1016/j.memsci.2009.03.027Suche in Google Scholar

[26] Rybak, A., Krasowska, M., Strzelewicz, A., & Grzywna, Z. J. (2009b). “Smoluchowski type” equations for modelling of air separation by membranes with various structure. Acta Physica Polonica B, 40, 1447–1454. Suche in Google Scholar

[27] Rybak, A., Strzelewicz, A., Krasowska, M., Dudek, G., & Grzywna, Z. J. (2012). Influence of various parameters on the air separation process by magnetic membranes. Separation Science and Technology, 47, 1395–1404. DOI: 10.1080/01496395.2012.672509. http://dx.doi.org/10.1080/01496395.2012.67250910.1080/01496395.2012.672509Suche in Google Scholar

[28] Sapurina, I., & Stejskal, J. (2009). Ternary composites of multiwall carbon nanotubes, polyaniline and noble-metal nanoparticles for potential applications in electrocatalysis. Chemical Papers, 63, 579–585. DOI: 10.2478/s11696-009-0061-3. http://dx.doi.org/10.2478/s11696-009-0061-310.2478/s11696-009-0061-3Suche in Google Scholar

[29] Shao, L., Samseth, J., & Hägg, M. B. (2009). Crosslinking and stabilization of nanoparticles filled PMP nanocomposite membranes for gas separations. Journal of Membrane Science, 326, 285–292. DOI: 10.1016/j.memsci.2008.09.053. http://dx.doi.org/10.1016/j.memsci.2008.09.05310.1016/j.memsci.2008.09.053Suche in Google Scholar

[30] Sieffert, D., & Staudt, C. (2011). Preparation of hybrid materials containing copolyimides covalently linked with carbon nanotubes. Separation and Purification Technology, 77, 99–103. DOI: 10.1016/j.seppur.2010.11.026. http://dx.doi.org/10.1016/j.seppur.2010.11.02610.1016/j.seppur.2010.11.026Suche in Google Scholar

[31] Singh, H., & Hatton, T. A. (2007). Orientational dependence of apparent magnetic susceptibilities of superparamagnetic nanoparticles in planar structured arrays: Effect on magnetic moments of nanoparticle-coated core-shell magnetic beads. Journal of Magnetism and Magnetic Materials, 315, 53–64. DOI: 10.1016/j.jmmm.2007.02.198. http://dx.doi.org/10.1016/j.jmmm.2007.02.19810.1016/j.jmmm.2007.02.198Suche in Google Scholar

[32] Strathmann, H., Giorno, L., & Drioli, E. (2006). An introduction to membrane science and technology. Rende, Italy: Consiglio Nazionale delle Ricerche. Suche in Google Scholar

[33] Strzelewicz, A., & Grzywna, Z. J. (2007). Studies on the air membrane separation in the presence of a magnetic field. Journal of Membrane Science, 294, 60–67. DOI: 10.1016/j.memsci.2007.02.008. http://dx.doi.org/10.1016/j.memsci.2007.02.00810.1016/j.memsci.2007.02.008Suche in Google Scholar

[34] Sysel, P., Minko, E., & Čechová, R. (2009). Preparation and characterization of hyperbranched polyimides based on 4,4′,4″-triaminotriphenyl-methane. E-Polymers, 9, 976–985. DOI: 10.1515/epoly.2009.9.1.976. 10.1515/epoly.2009.9.1.976Suche in Google Scholar

[35] Sysel, P., Minko, E., Hauf, M., Friess, K., Hynek, V., Vopička, O., Pilnáček, K., & Šípek, M. (2011). Mixed matrix membranes based on hyperbranched polyimide and mesoporous silica for gas separation. Desalination and Water Treatment, 34, 211–215. DOI: 10.5004/dwt.2011.2859. http://dx.doi.org/10.5004/dwt.2011.285910.5004/dwt.2011.2859Suche in Google Scholar

[36] Tagirov, M. S., Aminova, R. M., Frossati, G., Efimov, V. N., Mamin, G. V., Naletov, V. V., Tayurskii, D. A., & Yudin, A. N. (2003). On the magnetism of liquid nitrogen-liquid oxygen mixture. Physica B: Condensed Matter, 329–333, 433–434. DOI: 10.1016/s0921-4526(02)02330-x. http://dx.doi.org/10.1016/S0921-4526(02)02330-X10.1016/S0921-4526(02)02330-XSuche in Google Scholar

[37] Tran, A., & Kruczek, B. (2007). Development and characterization of homopolymers and copolymers from the family of polyphenylene oxides. Journal of Applied Polymer Science, 106, 2140–2148. DOI: 10.1002/app.26055. http://dx.doi.org/10.1002/app.2605510.1002/app.26055Suche in Google Scholar

[38] Tural, B., Özkan, N., & Volkan, M. (2009). Preparation and characterization of polymer coated superparamagnetic magnetite nanoparticle agglomerates. Journal of Physics and Chemistry of Solids, 70, 860–866. DOI: 10.1016/j.jpcs.2009.04.007. http://dx.doi.org/10.1016/j.jpcs.2009.04.00710.1016/j.jpcs.2009.04.007Suche in Google Scholar

[39] Villaluenga, J. P. G., Seoane, B., Hradil, J., & Sysel, P., (2007). Gas permeation characteristics of heterogeneous ODPA-BIS P polyimide membranes at different temperatures. Journal of Membrane Science, 305, 160–168. DOI: 10.1016/j.memsci.2007.08.002. http://dx.doi.org/10.1016/j.memsci.2007.08.00210.1016/j.memsci.2007.08.002Suche in Google Scholar

[40] Vu, D. Q., Koros, W. J., & Miller, S. J. (2003). Mixed matrix membranes using carbon molecular sieves. Journal of Membrane Science, 211, 311–334. DOI: 10.1016/s0376-7388(02)00429-5. http://dx.doi.org/10.1016/S0376-7388(02)00429-510.1016/S0376-7388(02)00429-5Suche in Google Scholar

[41] Wankat, P. C., & Kostroski, K. P. (2011). Hybrid membranecryogenic distillation air separation process for oxygen production. Separation Science and Technology, 46, 1539–1545. DOI: 10.1080/01496395.2011.577497. http://dx.doi.org/10.1080/01496395.2011.57749710.1080/01496395.2011.577497Suche in Google Scholar

[42] Xu, C., Ohno, K., Ladmiral, V., & Composto, R. J. (2008). Dispersion of polymer-grafted magnetic nanoparticles in homopolymers and block copolymers. Polymer, 49, 3568–3577. DOI: 10.1016/j.polymer.2008.05.040. http://dx.doi.org/10.1016/j.polymer.2008.05.04010.1016/j.polymer.2008.05.040Suche in Google Scholar

[43] Yampolskii, Y., Freeman, B., Grzywna, Z. J., Rybak, A., & Strzelewicz, A. (2010). Chapter 9. Air enrichment by polymeric magnetic membranes. In Y. Yampolskii & B. Freeman (Eds.), Membrane gas separation (pp. 159–182). Chichester, UK: Wiley. DOI: 10.1002/9780470665626.ch9. http://dx.doi.org/10.1002/978047066562610.1002/9780470665626.ch9Suche in Google Scholar

[44] Zanard, S., Alberti, A., Cruciani, G., Corma, A., Fornés, V., & Brunelli, M. (2004). Crystal structure determination of zeolite Nu-6(2) and its layered precursor Nu-6(1). Angewandte Chemie International Edition, 43, 4933–4937. DOI: 10.1002/anie.200460085. http://dx.doi.org/10.1002/anie.20046008510.1002/anie.200460085Suche in Google Scholar PubMed

[45] Závišová, V., Koneracká, M., Štrbák, O., Tomašovičová, N., Kopčanský, P., Timko, M., & Vavra, I. (2007). Encapsulation of indomethacin in magnetic biodegradable polymer nanoparticles. Journal of Magnetism and Magnetic Materials, 311, 379–382. DOI: 10.1016/j.jmmm.2006.11.177. http://dx.doi.org/10.1016/j.jmmm.2006.11.17710.1016/j.jmmm.2006.11.177Suche in Google Scholar

Published Online: 2014-6-24
Published in Print: 2014-10-1

© 2014 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Chemical preparation and applications of silver dendrites
  2. Evaluation of antioxidant activity and DNA cleavage protection effect of naphthyl hydroxamic acid derivatives through conventional and fluorescence microscopic methods
  3. Modelling of ORL1 receptor-ligand interactions
  4. Kinetics of enantioselective liquid-liquid extraction of phenylglycine enantiomers using a BINAP-copper complex as chiral selector
  5. Diffusive transport of Cu(II) ions through thin ion imprinted polymeric membranes
  6. Magnetic mixed matrix membranes in air separation
  7. The use of impregnated perlite as a heterogeneous catalyst for biodiesel production from marula oil
  8. Nitrobenzene degradation by micro-sized iron and electron efficiency evaluation
  9. RP-HPLC-UV-ESI-MS phytochemical analysis of fruits of Conocarpus erectus L.
  10. Residue analysis of fosthiazate in cucumber and soil by QuEChERS and GC-MS
  11. Degradation of polylactide using basic ionic liquid imidazolium acetates
  12. Ring-opening polymerisation of ɛ-caprolactone catalysed by Brønsted acids
  13. Click synthesis by Diels-Alder reaction and characterisation of hydroxypropyl methylcellulose-based hydrogels
  14. Preparation and physical properties of chitosan-coated calcium sulphate whiskers
  15. A facile synthetic route for antineoplastic drug GDC-0449
  16. Two new frameworks for biphenyl-3,3′,5,5′-tetracarboxylic acid and nitrogen-containing organics
  17. Antioxidant and binding properties of methanol extracts from indigo plant leaves
  18. Dithiols as more effective than monothiols in protecting biomacromolecules from free-radical-mediated damage: in vitro oxidative degradation of high-molar-mass hyaluronan
Heruntergeladen am 4.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-014-0587-x/html
Button zum nach oben scrollen