Abstract
Silver dendrites have received immense attention because of their fascinating hierarchical structures and unique properties. Depending on the methods of synthesis, Ag dendrites can be implemented in numerous fields. This review summarizes a variety of Ag dendrites preparation techniques. The involved growth mechanisms are investigated in order to control the formation progress more effectively. With regard to the applications, this article mainly focuses on surface enhanced Raman spectroscopy, catalysis, superhydrophobic surface and surface enhanced fluorescence by using Ag dendrites. The remaining issues of the preparation methods, which impede the practical applications of Ag dendrites, are pointed out to enlighten their future research.
[1] Abbasi, N., Shahbazi, P., & Kiani, A. (2013). Electrocatalytic oxidation of ethanol at Pd/Ag nanodendrites prepared via low support electrodeposition and galvanic replacement. Journal of Materials Chemistry A, 1, 9966–9972. DOI: 10.1039/c3ta10706j. http://dx.doi.org/10.1039/c3ta10706j10.1039/c3ta10706jSuche in Google Scholar
[2] Avizienis, A. V., Martin-Olmos, C., Sillin, H. O., Aono, M., Gimzewski, J. K., & Stieg, A. Z. (2013). Morphological transitions from dendrites to nanowires in the electroless deposition of silver. Crystal Growth & Design, 13, 465–469. DOI: 10.1021/cg301692n. http://dx.doi.org/10.1021/cg301692n10.1021/cg301692nSuche in Google Scholar
[3] Carro, P., Ambrosolio, S., Marchiano, S. L., Creus, A. H., Salvarezza, R. C., & Arvia, A. J. (1995). Transport phenomena and growth modes of silver electrodeposits. Journal of Electroanalytical Chemistry, 396, 183–195. DOI: 10.1016/0022-0728(95)04196-u. http://dx.doi.org/10.1016/0022-0728(95)04196-U10.1016/0022-0728(95)04196-USuche in Google Scholar
[4] Chen, S., & Carroll, D. L. (2002). Synthesis and characterization of truncated triangular silver nanoplates. Nano Letters, 2, 1003–1007. DOI: 10.1021/nl025674h. http://dx.doi.org/10.1021/nl025674h10.1021/nl025674hSuche in Google Scholar
[5] Chen, X., Jia, B., Saha, J. K., Cai, B., Stokes, N., Qiao, Q., Wang, Y., Shi, Z., & Gu, M. (2012). Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles. Nano Letters, 12, 2187–2192. DOI: 10.1021/nl203463z. http://dx.doi.org/10.1021/nl203463z10.1021/nl203463zSuche in Google Scholar PubMed
[6] Cheng, W. M., Wang, C. C., & Chen, C. Y. (2010). Preparing chelated copolymer membrane for fabrication of Ag dendrites. Journal of Colloid Interface Science, 348, 49–56. DOI: 10.1016/j.jcis.2010.04.040. http://dx.doi.org/10.1016/j.jcis.2010.04.04010.1016/j.jcis.2010.04.040Suche in Google Scholar PubMed
[7] Ding, H. P., Xin, G. Q., Chen, K. C., Zhang, M., Liu, Q., Hao, J., & Liu, H. G. (2010). Silver dendritic nanostructures formed at the solid/liquid interface via electroless deposition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 353, 166–171. DOI: 10.1016/j.colsurfa.2009.11.008. http://dx.doi.org/10.1016/j.colsurfa.2009.11.00810.1016/j.colsurfa.2009.11.008Suche in Google Scholar
[8] Dong, B., Song, H., Yu, L., Bai, X., Wang, Y., Xu, L., & Chen, J. (2010). High voltage preparation, characterization, and optical properties of silver dendrites in PVA matrix. Frontiers of Optoelectronics in China, 3, 205–210. DOI: 10.1007/s12200-010-0004-1. http://dx.doi.org/10.1007/s12200-010-0004-110.1007/s12200-010-0004-1Suche in Google Scholar
[9] Dong, J., Zheng, H., Yan, X., Sun, Y., & Zhang, Z. (2012). Fabrication of flower-like silver nanostructure on the Al substrate for surface enhanced fluorescence. Applied Physics Letters, 100, 051112. DOI: 10.1063/1.3681420. http://dx.doi.org/10.1063/1.368142010.1063/1.3681420Suche in Google Scholar
[10] Fang, J., Ding, B., & Song, X. (2008). Self-assembly ability of building units in mesocrystal, structural, and morphological transitions in Ag nanostructures growth. Crystal Growth & Design, 8, 3616–3622. DOI: 10.1021/cg8001543. http://dx.doi.org/10.1021/cg800154310.1021/cg8001543Suche in Google Scholar
[11] Fang, J., Hahn, H., Krupke, R., Schramm, F., Scherer, T., Ding, B., & Song, X. (2009). Silver nanowires growth via branch fragmentation of electrochemically grown silver dendrites. Chemical Communications, 2009, 1130–1132. DOI: 10.1039/b819003h. http://dx.doi.org/10.1039/b819003h10.1039/b819003hSuche in Google Scholar
[12] Fu, J., Ye, W., & Wang, C. (2013). Facile synthesis of Ag dendrites on Al foil via galvanic replacement reaction with [Ag(NH3)2]Cl for ultrasensitive SERS detecting of biomolecules. Materials Chemistry and Physics, 141, 107–113. DOI: 10.1016/j.matchemphys.2013.04.031. http://dx.doi.org/10.1016/j.matchemphys.2013.04.03110.1016/j.matchemphys.2013.04.031Suche in Google Scholar
[13] Gao, X., Gu, G., Hu, Z., Guo, Y., Fu, X., & Song, J. (2005). A simple method for preparation of silver dendrites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 254, 57–61. DOI: 10.1016/j.colsurfa.2004.11.009. http://dx.doi.org/10.1016/j.colsurfa.2004.11.00910.1016/j.colsurfa.2004.11.009Suche in Google Scholar
[14] Gu, C., & Zhang, T. Y. (2008). Electrochemical synthesis of silver polyhedrons and dendritic films with superhydrophobic surfaces. Langmuir, 24, 12010–12016. DOI: 10.1021/la802354n. http://dx.doi.org/10.1021/la802354n10.1021/la802354nSuche in Google Scholar
[15] Guadagnini, L., Ballarin, B., & Tonelli, D. (2013). Dendritic silver nanostructures obtained via one-step electrosynthesis: effect of nonanesulfonic acid and polyvinylpyrrolidone as additives on the analytical performance for hydrogen peroxide sensing. Journal of Nanoparticle Research, 15, 1971. DOI: 10.1007/s11051-013-1971-0. http://dx.doi.org/10.1007/s11051-013-1971-010.1007/s11051-013-1971-0Suche in Google Scholar
[16] Gutés, A., Carraro, C., & Maboudian, R. (2010). Silver dendrites from galvanic displacement on commercial aluminum foil as an effective SERS substrate. Journal of the American Chemical Society, 132, 1476–1477. DOI: 10.1021/ja909806t. http://dx.doi.org/10.1021/ja909806t10.1021/ja909806tSuche in Google Scholar
[17] Han, Y., Liu, S., Han, M., Bao, J., & Dai, Z. (2009). Fabrication of hierarchical nanostructure of silver via a surfactant-free mixed solvents route. Crystal Growth & Design, 9, 3941–3947. DOI: 10.1021/cg900066z. http://dx.doi.org/10.1021/cg900066z10.1021/cg900066zSuche in Google Scholar
[18] He, R., Qian, X., Yin, J., & Zhu, Z. (2003). Formation of silver dendrites under microwave irradiation. Chemical Physics Letters, 369, 454–458. DOI: 10.1016/s0009-2614(02)02036-5. http://dx.doi.org/10.1016/S0009-2614(02)02036-510.1016/S0009-2614(02)02036-5Suche in Google Scholar
[19] He, L., Lin, M., Li, H., & Kim, N. J. (2010). Surface-enhanced Raman spectroscopy coupled with dendritic silver nanosubstrate for detection of restricted antibiotics. Journal of Raman Spectroscopy, 41, 739–744. DOI: 10.1002/jrs.2505. 10.1002/jrs.2505Suche in Google Scholar
[20] Hong, X., Wang, G. Z., Wang, Y., Zhu, W., & Shen, X. S. (2010). Controllable electrochemical synthesis of silver dendritic nanostructures and their SERS properties. Chinese Journal of Chemical Physics, 23, 596–602. DOI: 10.1088/1674-0068/23/05/596-602. http://dx.doi.org/10.1088/1674-0068/23/05/596-60210.1088/1674-0068/23/05/596-602Suche in Google Scholar
[21] Huang, J., Vongehr, S., Tang, S., Lu, H., Shen, J., & Meng, X. (2009). Ag dendrite-based Au/Ag bimetallic nanostructures with strongly enhanced catalytic activity. Langmuir, 25, 11890–11896. DOI: 10.1021/la9015383. http://dx.doi.org/10.1021/la901538310.1021/la9015383Suche in Google Scholar PubMed
[22] Jiang, Z., Lin, Y., & Xie, Z. (2012). Structural investigations and growth mechanism of well-defined Ag dendrites prepared by conventional redox displacement. Materials Chemistry and Physics, 134, 762–767. DOI: 10.1016/j.matchemphys.2012.03.065. http://dx.doi.org/10.1016/j.matchemphys.2012.03.06510.1016/j.matchemphys.2012.03.065Suche in Google Scholar
[23] Jin, R., Cao, Y., Mirkin, C. A., Kelly, K. L., Schatz, G. C., & Zheng, J. G. (2001). Photoinduced conversion of silver nanospheres to nanoprisms. Science, 294, 1901–1903. DOI: 10.1126/science.1066541. http://dx.doi.org/10.1126/science.106654110.1126/science.1066541Suche in Google Scholar PubMed
[24] Kang, Z., Wang, E., Lian, S., Mao, B., Chen, L., & Xu, L. (2005). Surfactant-assisted electrochemical method for dendritic silver nanocrystals with advanced structure. Materials Letters, 59, 2289–2291. DOI: 10.1016/j.matlet.2005.03.005. http://dx.doi.org/10.1016/j.matlet.2005.03.00510.1016/j.matlet.2005.03.005Suche in Google Scholar
[25] Kang, Y., & Chen, F. (2013). Preparation of Ag-Cu bimetallic dendritic nanostructures and their hydrogen peroxide electroreduction property. Journal of Applied Electrochemistry, 43, 667–677. DOI: 10.1007/s10800-013-0563-0. http://dx.doi.org/10.1007/s10800-013-0563-010.1007/s10800-013-0563-0Suche in Google Scholar
[26] Kaniyankandy, S., Nuwad, J., Thinaharan, C., Dey, G. K., & Pillai, C. G. S. (2007). Electrodeposition of silver nanodendrites. Nanotechnology, 18, 125610. DOI: 10.1088/0957-4484/18/12/125610. http://dx.doi.org/10.1088/0957-4484/18/12/12561010.1088/0957-4484/18/12/125610Suche in Google Scholar
[27] Keita, B., Brudna Holzle, L. R., Ngo Biboum, R., Nadjo, L., Mbomekalle, I. M., Franger, S., Berthet, P., Brisset, F., Miserque, F., & Ekedi, G. A. (2011). Green wet chemical route for the synthesis of silver and palladium dendrites. European Journal of Inorganic Chemistry, 2011, 1201–1204. DOI: 10.1002/ejic.201001259. http://dx.doi.org/10.1002/ejic.20100125910.1002/ejic.201001259Suche in Google Scholar
[28] Lei, Z., Hu, B., & Yang, H. (2008). Synthesis of different crystalline silver nanocomposites stabilized by an amphiphilic block copolymer. Materials Letters, 62, 1424–1426. DOI: 10.1016/j.matlet.2007.08.077. http://dx.doi.org/10.1016/j.matlet.2007.08.07710.1016/j.matlet.2007.08.077Suche in Google Scholar
[29] Liu, P., Yang, S., Fang, M., Luo, X., & Cai, W. (2011a). Complex nanostructures synthesized from nanoparticle colloids under an external electric field. Nanoscale, 3, 3933–3940. DOI: 10.1039/c1nr10808e. http://dx.doi.org/10.1039/c1nr10808e10.1039/c1nr10808eSuche in Google Scholar PubMed
[30] Liu, R., Li, S., Yu, X., Zhang, G., Ma, Y., Yao, J., Keita B., & Nadjo, L. (2011b). Polyoxometalate-assisted galvanic replacement synthesis of silver hierarchical dendritic structures. Crystal Growth & Design, 11, 3424–3431. DOI: 10.1021/cg2001333. http://dx.doi.org/10.1021/cg200133310.1021/cg2001333Suche in Google Scholar
[31] Liu, B., & Wang, M. (2013). Electrodeposition of dendritic silver nanostructures and their application as hydrogen peroxide sensor. International Journal of Electrochemical Science, 8, 8572–8578. Suche in Google Scholar
[32] Lu, L., Kobayashi, A., Kikkawa, Y., Tawa, K., & Ozaki, Y. (2006). Oriented attachment-based assembly of dendritic silver nanostructures at room temperature. The Journal of Physical Chemistry B, 110, 23234–23241. DOI: 10.1021/jp063978c. http://dx.doi.org/10.1021/jp063978c10.1021/jp063978cSuche in Google Scholar
[33] Maillard, M., Huang, P., & Brus, L. (2003). Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed [Ag+]. Nano Letters, 3, 1611–1615. DOI: 10.1021/nl034666d. http://dx.doi.org/10.1021/nl034666d10.1021/nl034666dSuche in Google Scholar
[34] Martin, C. R. (1994). Nanomaterials: A membrane-based synthetic approach. Science, 266, 1961–1966. DOI: 10.1126/science.266.5193.1961. http://dx.doi.org/10.1126/science.266.5193.196110.1126/science.266.5193.1961Suche in Google Scholar
[35] Martínez-Castañón, G., Martínez, J. R., Ortega Zarzosa, G., Ruiz, F., & Sánchez-Loredo, M. G. (2005). Optical absorption of Ag particles dispersed in a SiO2 amorphous matrix. Journal of Sol-Gel Science and Technology, 36, 137–145. DOI: 10.1007/s10971-005-5285-2. http://dx.doi.org/10.1007/s10971-005-5285-210.1007/s10971-005-5285-2Suche in Google Scholar
[36] Mason, T. J., Lorimer, J. P., & Walton, D. J. (1990). Sonoelectrochemistry. Ultrasonics, 28, 333–337. DOI: 10.1016/0041-624x(90)90041-l. http://dx.doi.org/10.1016/0041-624X(90)90041-L10.1016/0041-624X(90)90041-LSuche in Google Scholar
[37] Mlambo, M., Mpelane, S., Mdluli, P. S., Mashazi, P., Sikhwivhilu, L., Moloto, N., & Moloto, M. J. (2013). Unique flexible silver dendrites thin films fabricated on cellulose dialysis cassettes. Journal of Materials Science, 48, 6418–6425. DOI: 10.1007/s10853-013-7442-2. http://dx.doi.org/10.1007/s10853-013-7442-210.1007/s10853-013-7442-2Suche in Google Scholar
[38] Nadagouda, M. N., Speth, T. F., & Varma, R. S. (2011). Microwave-assisted green synthesis of silver nanostructures. Accounts of Chemical Research, 44, 469–478. DOI: 10.1021/ar1001457. http://dx.doi.org/10.1021/ar100145710.1021/ar1001457Suche in Google Scholar PubMed
[39] Noroozi, M., Zakaria, A., Moksin, M. M., Wahab, Z. A., & Abedini, A. (2012). Green formation of spherical and dendritic silver nanostructures under microwave irradiation without reducing agent. International Journal of Molecular Sciences, 13, 8086–8096. DOI: 10.3390/ijms13078086. http://dx.doi.org/10.3390/ijms1307808610.3390/ijms13078086Suche in Google Scholar PubMed PubMed Central
[40] Personick, M. L., Langille, M. R., Zhang, J., Wu, J., Li, S., & Mirkin, C. A. (2013). Plasmon-mediated synthesis of silver cubes with unusual twinning structures using short wavelength excitation. Small, 9, 1947–1953. DOI: 10.1002/smll.201202451. http://dx.doi.org/10.1002/smll.20120245110.1002/smll.201202451Suche in Google Scholar PubMed
[41] Pieczonka, N. P. W., Moula, G., & Aroca, R. F. (2009). SERRS for single-molecule detection of dye-labeled phospholipids in Langmuir-Blodgett monolayers. Langmuir, 25, 11261–11264. DOI: 10.1021/la902486w. http://dx.doi.org/10.1021/la902486w10.1021/la902486wSuche in Google Scholar PubMed
[42] Pradhan, N., Pal, A., & Pal, T. (2001). Catalytic reduction of aromatic nitro compounds by coinage metal nanoparticles. Langmuir, 17, 1800–1802. DOI: 10.1021/la000862d. http://dx.doi.org/10.1021/la000862d10.1021/la000862dSuche in Google Scholar
[43] Qin, X., Wang, H., Wang, X., Miao, Z., Fang, Y., Chen, Q., & Shao, X. (2011). Synthesis of dendritic silver nanostructures and their application in hydrogen peroxide electroreduction. Electrochimica Acta, 56, 3170–3174. DOI: 10.1016/j.electacta.2011.01.058. http://dx.doi.org/10.1016/j.electacta.2011.01.05810.1016/j.electacta.2011.01.058Suche in Google Scholar
[44] Qiu, T., Wu, X. L., Mei, Y. F., Chu, P. K., & Siu, G. G. (2005). Self-organized synthesis of silver dendritic nanostructures via an electroless metal deposition method. Applied Physics A, 81, 669–671. DOI: 10.1007/s00339-005-3263-8. http://dx.doi.org/10.1007/s00339-005-3263-810.1007/s00339-005-3263-8Suche in Google Scholar
[45] Rashid, M. H., & Mandal, T. K. (2007). Synthesis and catalytic application of nanostructured silver dendrites. The Journal of Physical Chemistry C, 111, 16750–16760. DOI: 10.1021/jp074963x. http://dx.doi.org/10.1021/jp074963x10.1021/jp074963xSuche in Google Scholar
[46] Ren, W., Guo, S., Dong, S., & Wang, E. (2011a). Ag dendrites with rod-like tips: synthesis, characterization and fabrication of superhydrophobic surfaces. Nanoscale, 3, 2241–2246. DOI: 10.1039/c1nr10074b. http://dx.doi.org/10.1039/c1nr10074b10.1039/c1nr10074bSuche in Google Scholar PubMed
[47] Ren, W., Guo, S., Dong, S., & Wang, E. (2011b). A simple route for the synthesis of morphology-controlled and SERS-active Ag dendrites with near-infrared absorption. The Journal of Physical Chemistry C, 115, 10315–10320. DOI: 10.1021/jp110532c. http://dx.doi.org/10.1021/jp110532c10.1021/jp110532cSuche in Google Scholar
[48] Sawangphruk, M., Pinitsoontorn, S., & Limtrakul, J. (2012). Surfactant-assisted electrodeposition and improved electrochemical capacitance of silver-doped manganese oxide pseudocapacitor electrodes. Journal of Solid State Electrochemistry, 16, 2623–2629. DOI: 10.1007/s10008-012-1691-x. http://dx.doi.org/10.1007/s10008-012-1691-x10.1007/s10008-012-1691-xSuche in Google Scholar
[49] Shao, I., & Gignac, L. (2012). Mechanism study of Ag catalyzed directional etch of silicon for nanowire formation. ECS Transactions, 41, 9–25. DOI: 10.1149/1.3699374. http://dx.doi.org/10.1149/1.369937410.1149/1.3699374Suche in Google Scholar
[50] Song, W., Cheng, Y., Jia, H., Xu, W., & Zhao, B. (2006). Surface enhanced Raman scattering based on silver dendrites substrate. Journal of Colloid Interface Science, 298, 765–768. DOI: 10.1016/j.jcis.2006.01.037. http://dx.doi.org/10.1016/j.jcis.2006.01.03710.1016/j.jcis.2006.01.037Suche in Google Scholar PubMed
[51] Sulka, G. D., & Jaskuła, M. (2006a). Temperature influence on the morphology and roughness of silver deposit formed by cementation. Helvetica Chimica Acta, 89, 427–441. DOI: 10.1002/hlca.200690043. http://dx.doi.org/10.1002/hlca.20069004310.1002/hlca.200690043Suche in Google Scholar
[52] Sulka, G. D., & Jaskuła, M. (2006b). Effect of sulphuric acid and copper sulphate concentrations on the morphology of silver deposit in the cementation process. Electrochimica Acta, 51, 6111–6119. DOI: 10.1016/j.electacta.2005.12.051. http://dx.doi.org/10.1016/j.electacta.2005.12.05110.1016/j.electacta.2005.12.051Suche in Google Scholar
[53] Sun, X., & Hagner, M. (2007). Novel preparation of snowflake-like dendritic nanostructures of Ag or Au at room temper ature via a wet-chemical route. Langmuir, 23, 9147–9150. DOI: 10.1021/la701519x. http://dx.doi.org/10.1021/la701519x10.1021/la701519xSuche in Google Scholar PubMed
[54] Taleb, A., Mangeney, C., & Ivanova, V. (2011). Electrochemical synthesis using a self-assembled Au nanoparticle template of dendritic films with unusual wetting properties. Nanotechnology, 22, 205301. DOI: 10.1088/0957-4484/22/20/205301. http://dx.doi.org/10.1088/0957-4484/22/20/20530110.1088/0957-4484/22/20/205301Suche in Google Scholar PubMed
[55] Tang, S., Meng, X., Lu, H., & Zhu, S. (2009). PVP-assisted sonoelectrochemical growth of silver nanostructures with various shapes. Materials Chemistry and Physics, 116, 464–468. DOI: 10.1016/j.matchemphys.2009.04.004. http://dx.doi.org/10.1016/j.matchemphys.2009.04.00410.1016/j.matchemphys.2009.04.004Suche in Google Scholar
[56] Tang, S., Vongehr, S., Wan, N., & Meng, X. (2013). Rapid synthesis of pentagonal silver nanowires with diameterdependent tensile yield strength. Materials Chemistry and Physics, 142, 17–26. DOI: 10.1016/j.matchemphys.2013.06.023. http://dx.doi.org/10.1016/j.matchemphys.2013.06.02310.1016/j.matchemphys.2013.06.023Suche in Google Scholar
[57] Varshney, R., Bhadauria, S., & Gaur, M. S. (2010). Biogenic synthesis of silver nanocubes and nanorods using sundried Stevia rebaudiana leaves. Advanced Materials Letters, 1, 232–237. DOI: 10.5185/amlett.2010.9155. http://dx.doi.org/10.5185/amlett.2010.915510.5185/amlett.2010.9155Suche in Google Scholar
[58] Wang, S., & Xin, H. (2000). Fractal and dendritic growth of metallic Ag aggregated from different kinds of Γ-irradiated solutions. The Journal of Physical Chemistry B, 104, 5681–5685. DOI: 10.1021/jp000225w. http://dx.doi.org/10.1021/jp000225w10.1021/jp000225wSuche in Google Scholar
[59] Wang, X., Naka, K., Itoh, H., Park, S., & Chujo, Y. (2002). Synthesis of silver dendritic nanostructures protected by tetrathiafulvalene. Chemical Communications, 2002, 1300–1301. DOI: 10.1039/b203185j. http://dx.doi.org/10.1039/b203185j10.1039/b203185jSuche in Google Scholar PubMed
[60] Wang, Z., Zhao, Z., & Qiu, J. (2008). A general strategy for synthesis of silver dendrites by galvanic displacement under hydrothermal conditions. Journal of Physics and Chemistry of Solids, 69, 1296–1300. DOI: 10.1016/j.jpcs.2007.10.089. http://dx.doi.org/10.1016/j.jpcs.2007.10.08910.1016/j.jpcs.2007.10.089Suche in Google Scholar
[61] Wang, L., Li, H., Tian, J., & Sun, X. (2010). Monodisperse, micrometer-scale, highly crystalline, nanotextured Ag dendrites: Rapid, large-scale, wet-chemical synthesis and their application as SERS substrates. ACS Applied Materials & Interfaces, 2, 2987–2991. DOI: 10.1021/am100968j. http://dx.doi.org/10.1021/am100968j10.1021/am100968jSuche in Google Scholar PubMed
[62] Wang, X., Liu, X., & Wang, X. (2011). Self-assembled synthesis of Ag nanodendrites and their applications to SERS. Journal of Molecular Structure, 997, 64–69. DOI: 10.1016/j.molstruc.2011.04.041. http://dx.doi.org/10.1016/j.molstruc.2011.04.04110.1016/j.molstruc.2011.04.041Suche in Google Scholar
[63] Wang, S., Xu, L. P., Wen, Y., Du, H., Wang, S., & Zhang, X. (2013). Space-confined fabrication of silver nanodendrites and their enhanced SERS activity. Nanoscale, 5, 4284–4290. DOI: 10.1039/c3nr00313b. http://dx.doi.org/10.1039/c3nr00313b10.1039/c3nr00313bSuche in Google Scholar
[64] Wei, Y., Chen, Y., Ye, L., & Chang, P. (2011). Preparation of dendritic-like Ag crystals using monocrystalline silicon as template. Materials Research Bulletin, 46, 929–936. DOI: 10.1016/j.materresbull.2011.02.025. http://dx.doi.org/10.1016/j.materresbull.2011.02.02510.1016/j.materresbull.2011.02.025Suche in Google Scholar
[65] Welch, C. M., Banks, C. E., Simm, A. O., & Compton, R. G. (2005). Silver nanoparticle assemblies supported on glassycarbon electrodes for the electro-analytical detection of hydrogen peroxide. Analytical and Bioanalytical Chemistry, 382, 12–21. DOI: 10.1007/s00216-005-3205-5. http://dx.doi.org/10.1007/s00216-005-3205-510.1007/s00216-005-3205-5Suche in Google Scholar
[66] Wen, X., Xie, Y. T., Mak, M. W. C., Cheung, K. Y., Li, X. Y., Renneberg, R., & Yang, S. (2006). Dendritic nanostructures of silver: Facile synthesis, structural characterizations, and sensing applications. Langmuir, 22, 4836–4842. DOI: 10.1021/la060267x. http://dx.doi.org/10.1021/la060267x10.1021/la060267xSuche in Google Scholar
[67] Xia, Y., & Wang, J. (2011). Hierarchical silver nanodendrites: One-step preparation and application for SERS. Materials Chemistry and Physics, 125, 267–270. DOI: 10.1016/j.matchemphys.2010.09.022. http://dx.doi.org/10.1016/j.matchemphys.2010.09.02210.1016/j.matchemphys.2010.09.022Suche in Google Scholar
[68] Xiao, J., Xie, Y., Tang, R., Chen, M., & Tian, X. (2001). Novel ultrasonically assisted templated synthesis of palladium and silver dendritic nanostructures. Advanced Materials, 13, 1887–1891. DOI: 10.1002/1521-4095(200112)13:24〈1887:: AID-ADMA1887〉3.0.CO;2-2. http://dx.doi.org/10.1002/1521-4095(200112)13:24<1887::AID-ADMA1887>3.0.CO;2-210.1002/1521-4095(200112)13:24<1887::AID-ADMA1887>3.0.CO;2-2Suche in Google Scholar
[69] Xie, S., Zhang, X., Xiao, D., Paau, M. C., Huang, J., & Choi, M. M. F. (2011). Fast growth synthesis of silver dendrite crystals assisted by sulfate ion and its application for surfaceenhanced Raman scattering. The Journal of Physical Chemistry C, 115, 9943–9951. DOI: 10.1021/jp201484r. http://dx.doi.org/10.1021/jp201484r10.1021/jp201484rSuche in Google Scholar
[70] Xie, S., Zhang, X., Yang, S., Paau, M. C., Xiao, D., & Choi, M. M. F. (2012). Liesegang rings of dendritic silver crystals emerging from galvanic displacement reaction in a liquid-phase solution. RSC Advances, 2, 4627–4631. DOI: 10.1039/c2ra20055d. http://dx.doi.org/10.1039/c2ra20055d10.1039/c2ra20055dSuche in Google Scholar
[71] Yang, J. C., Chen, C. H., & Wu, R. J. (2012). Facile growth of silver crystals with greatly varied morphologies by PEOPPO-PEO tri-block copolymers. CrystEngComm, 14, 2871–2878. DOI: 10.1039/c2ce06385a. http://dx.doi.org/10.1039/c2ce06385a10.1039/c2ce06385aSuche in Google Scholar
[72] Ye, W., Chen, Y., Zhou, F., Wang, C., & Li, Y. (2012). Fluorideassisted galvanic replacement synthesis of Ag and Au dendrites on aluminum foil with enhanced SERS and catalytic activities. Journal of Materials Chemistry, 22, 18327–18334. DOI: 10.1039/c2jm32170j. http://dx.doi.org/10.1039/c2jm32170j10.1039/c2jm32170jSuche in Google Scholar
[73] Yi, Q., & Song, L. (2012). Polyaniline-modified silver and binary silver-cobalt catalysts for oxygen reduction reaction. Electroanalysis, 24, 1655–1663. DOI: 10.1002/elan.201200154. http://dx.doi.org/10.1002/elan.20120015410.1002/elan.201200154Suche in Google Scholar
[74] Yi, Z., Chen, S., Chen, Y., Luo, J., Wu, W., Yi, Y., & Tang, Y. (2012). Preparation of dendritic Ag/Au bimetallic nanostructures and their application in surface-enhanced Raman scattering. Thin Solid Films, 520, 2701–2707. DOI: 10.1016/j.tsf.2011.11.042. http://dx.doi.org/10.1016/j.tsf.2011.11.04210.1016/j.tsf.2011.11.042Suche in Google Scholar
[75] You, T., Niwa, O., Tomita, M., & Hirono, S. (2003). Characterization of platinum nanoparticle-embedded carbon film electrode and its detection of hydrogen peroxide. Analytical Chemistry, 75, 2080–2085. DOI: 10.1021/ac026337w. http://dx.doi.org/10.1021/ac026337w10.1021/ac026337wSuche in Google Scholar PubMed
[76] Yu, A., Zhang, X., Zhang, H., Han, D., & Knight, A. R. (2011). Preparation and electrochemical properties of gold nanoparticles containing carbon nanotubes-polyelectrolyte multilayer thin films. Electrochimica Acta, 56, 9015–9019. DOI: 10.1016/j.electacta.2011.02.100. http://dx.doi.org/10.1016/j.electacta.2011.02.10010.1016/j.electacta.2011.02.100Suche in Google Scholar
[77] Yu, A., Wang, Q., Yong, J., Mahon, P. J., Malherbe, F., Wang, F., Zhang, H., & Wang, J. (2012). Silver nanoparticlecarbon nanotube hybrid films: Preparation and electrochemical sensing. Electrochimica Acta, 74, 111–116. DOI: 10.1016/j.electacta.2012.04.024. http://dx.doi.org/10.1016/j.electacta.2012.04.02410.1016/j.electacta.2012.04.024Suche in Google Scholar
[78] Zhang, X., Shi, F., Niu, J., Jiang, Y., & Wang, Z. (2008). Superhydrophobic surfaces: from structural control to functional application. Journal of Materials Chemistry, 18, 621–633. DOI: 10.1039/b711226b. http://dx.doi.org/10.1039/b711226b10.1039/B711226BSuche in Google Scholar
[79] Zhang, J., Huang, F., & Lin, Z. (2010). Progress of nanocrystalline growth kinetics based on oriented attachment. Nanoscale, 2, 18–34. DOI: 10.1039/b9nr00047j. http://dx.doi.org/10.1039/b9nr00047j10.1039/B9NR00047JSuche in Google Scholar PubMed
[80] Zhang, G., Sun, S., Banis, M. N., Li, R., Cai, M., & Sun, X. (2011). Morphology-controlled green synthesis of single crystalline silver dendrites, dendritic flowers, and rods, and their growth mechanism. Crystal Growth & Design, 11, 2493–2499. DOI: 10.1021/cg200256j. http://dx.doi.org/10.1021/cg200256j10.1021/cg200256jSuche in Google Scholar
[81] Zhang, Q. X., Chen, Y. X., Guo, Z., Liu, H. L., Wang, D. P., & Huang, X. J. (2013). Bioinspired multifunctional heterohierarchical micro/nanostructure tetragonal array with selfcleaning, anticorrosion, and concentrators for the SERS detection. ACS Applied Materials & Interfaces, 5, 10633–10642. DOI: 10.1021/am403534z. http://dx.doi.org/10.1021/am403534z10.1021/am403534zSuche in Google Scholar PubMed
[82] Zheng, Z., Tang, S., Vongehr, S., & Meng, X. (2011). Squarewave electrochemical growth of lying three-dimensional silver dendrites with high surface-enhanced Raman scattering activities. Materials Chemistry and Physics, 129, 594–598. DOI: 10.1016/j.matchemphys.2011.04.070. http://dx.doi.org/10.1016/j.matchemphys.2011.04.07010.1016/j.matchemphys.2011.04.070Suche in Google Scholar
[83] Zhou, Y., Yu, S. H., Wang, C. Y., Li, X. G., Zhu, Y. R., & Chen, Z. Y. (1999). A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal Ag nanorods and Ag dendrites. Advanced Materials, 11, 850–852. DOI: 10.1002/(SICI)1521-4095(199907)11:10〈850::AIDADMA850〉3.3.CO;2-Q. http://dx.doi.org/10.1002/(SICI)1521-4095(199907)11:10<850::AID-ADMA850>3.0.CO;2-Z10.1002/(SICI)1521-4095(199907)11:10<850::AID-ADMA850>3.0.CO;2-ZSuche in Google Scholar
[84] Zhu, J., Liu, S., Palchik, O., Koltypin, Y., & Gedanken, A. (2000). Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods. Langmuir, 16, 6396–6399. DOI: 10.1021/la991507u. http://dx.doi.org/10.1021/la991507u10.1021/la991507uSuche in Google Scholar
[85] Zhu, Y., Zheng, H., Li, Y., Gao, L., Yang, Z., & Qian, Y. (2003). Synthesis of Ag dendritic nanostructures by using anisotropic nickel nanotubes. Materials Research Bulletin, 38, 1829–1834. DOI: 10.1016/j.materresbull.2003.08.004. http://dx.doi.org/10.1016/j.materresbull.2003.08.00410.1016/j.materresbull.2003.08.004Suche in Google Scholar
[86] Zou, K., Zhang, X. H., Duan, X. F., Meng, X. M., & Wu, S. K. (2004). Seed-mediated synthesis of silver nanostructures and polymer/silver nanocables by UV irradiation. Journal of Crystal Growth, 273, 285–291. DOI: 10.1016/j.jcrysgro.2004.08.016. http://dx.doi.org/10.1016/j.jcrysgro.2004.08.01610.1016/j.jcrysgro.2004.08.016Suche in Google Scholar
© 2014 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Chemical preparation and applications of silver dendrites
- Evaluation of antioxidant activity and DNA cleavage protection effect of naphthyl hydroxamic acid derivatives through conventional and fluorescence microscopic methods
- Modelling of ORL1 receptor-ligand interactions
- Kinetics of enantioselective liquid-liquid extraction of phenylglycine enantiomers using a BINAP-copper complex as chiral selector
- Diffusive transport of Cu(II) ions through thin ion imprinted polymeric membranes
- Magnetic mixed matrix membranes in air separation
- The use of impregnated perlite as a heterogeneous catalyst for biodiesel production from marula oil
- Nitrobenzene degradation by micro-sized iron and electron efficiency evaluation
- RP-HPLC-UV-ESI-MS phytochemical analysis of fruits of Conocarpus erectus L.
- Residue analysis of fosthiazate in cucumber and soil by QuEChERS and GC-MS
- Degradation of polylactide using basic ionic liquid imidazolium acetates
- Ring-opening polymerisation of ɛ-caprolactone catalysed by Brønsted acids
- Click synthesis by Diels-Alder reaction and characterisation of hydroxypropyl methylcellulose-based hydrogels
- Preparation and physical properties of chitosan-coated calcium sulphate whiskers
- A facile synthetic route for antineoplastic drug GDC-0449
- Two new frameworks for biphenyl-3,3′,5,5′-tetracarboxylic acid and nitrogen-containing organics
- Antioxidant and binding properties of methanol extracts from indigo plant leaves
- Dithiols as more effective than monothiols in protecting biomacromolecules from free-radical-mediated damage: in vitro oxidative degradation of high-molar-mass hyaluronan
Artikel in diesem Heft
- Chemical preparation and applications of silver dendrites
- Evaluation of antioxidant activity and DNA cleavage protection effect of naphthyl hydroxamic acid derivatives through conventional and fluorescence microscopic methods
- Modelling of ORL1 receptor-ligand interactions
- Kinetics of enantioselective liquid-liquid extraction of phenylglycine enantiomers using a BINAP-copper complex as chiral selector
- Diffusive transport of Cu(II) ions through thin ion imprinted polymeric membranes
- Magnetic mixed matrix membranes in air separation
- The use of impregnated perlite as a heterogeneous catalyst for biodiesel production from marula oil
- Nitrobenzene degradation by micro-sized iron and electron efficiency evaluation
- RP-HPLC-UV-ESI-MS phytochemical analysis of fruits of Conocarpus erectus L.
- Residue analysis of fosthiazate in cucumber and soil by QuEChERS and GC-MS
- Degradation of polylactide using basic ionic liquid imidazolium acetates
- Ring-opening polymerisation of ɛ-caprolactone catalysed by Brønsted acids
- Click synthesis by Diels-Alder reaction and characterisation of hydroxypropyl methylcellulose-based hydrogels
- Preparation and physical properties of chitosan-coated calcium sulphate whiskers
- A facile synthetic route for antineoplastic drug GDC-0449
- Two new frameworks for biphenyl-3,3′,5,5′-tetracarboxylic acid and nitrogen-containing organics
- Antioxidant and binding properties of methanol extracts from indigo plant leaves
- Dithiols as more effective than monothiols in protecting biomacromolecules from free-radical-mediated damage: in vitro oxidative degradation of high-molar-mass hyaluronan