Abstract
Two complexes, {Zn(bptc)0.5(bib)}n (I) and {Mn2(bptc)(pip)(H2O)}n (II) (H4bptc = biphenyl-3,3′,5,5′-tetracarboxylic acid; bib = 1,4-bis(2-methylimidazol-1-yl)butane; pip = 2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline) were synthesized and characterized by single-crystal X-ray diffraction, elemental analysis, IR, TGA and solid fluorescence spectra. The results show that I and II both have 3D network architectures. I has porous architecture with a 162 topology structure. Effective porosity calculated by Platon is 5.5 %. Moreover, it has a two-fold interpenetrating structure allowed by a 70.73° torsion between the benzene rings of the bptc4− ligand and the flexibility of bib. II has a tetranuclear structure composed of binuclear architecture units with the torsion of 43.44° between the benzene rings of the bptc4− ligand. TGA shows that the skeletons of I and II are stable up to 372°C and 553°C, respectively. I exhibits fluorescence.
[1] Batten, S. R., & Robson, R. (1998). Interpenetrating nets: Ordered, periodic entanglement. Angewandte Chemie International Edition, 37, 1460–1494. DOI: 10.1002/(sici)1521-3773(19980619)37:11〈1460::aid-anie1460〉3.0.co;2-z. http://dx.doi.org/10.1002/(SICI)1521-3773(19980619)37:11<1460::AID-ANIE1460>3.0.CO;2-Z10.1002/(SICI)1521-3773(19980619)37:11<1460::AID-ANIE1460>3.0.CO;2-ZSearch in Google Scholar
[2] Chen, B. L., Ockwig, N. W., Fronczek, F. R., Contreras, D. S., & Yaghi, O. M. (2005a). Transformation of a metal-organic framework from the NbO to PtS net. Inorganic Chemistry, 44, 181–183. DOI: 10.1021/ic048612y. http://dx.doi.org/10.1021/ic048612y10.1021/ic048612ySearch in Google Scholar
[3] Chen, B. L., Ockwig, N. W., Millward, A. R., Contreras, D. S., & Yaghi, O. M. (2005b). High H2 adsorption in a microporous metal-organic framework with open metal sites. Angewandte Chemie International Edition, 44, 4745–4749. DOI: 10.1002/anie.200462787. http://dx.doi.org/10.1002/anie.20046278710.1002/anie.200462787Search in Google Scholar
[4] Chen, B., Ma, S. Q., Zapata, F., Lobkovsky, E. B., & Yang, J. (2006). Hydrogen adsorption in an interpenetrated dynamic metal-organic framework. Inorganic Chemistry, 45, 5718–5720. DOI: 10.10 21/ic060437t. http://dx.doi.org/10.1021/ic060437t10.1021/ic060437tSearch in Google Scholar
[5] Choi, H. S., & Suh, M. P. (2009). Highly selective CO2 capture in flexible 3D coordination polymer networks. Angewandte Chemie, 121, 6997–7001. DOI: 10.1002/ange.200902836. http://dx.doi.org/10.1002/ange.20090283610.1002/ange.200902836Search in Google Scholar
[6] Dede, B., Karipcin, F., Arabalı, F., & Cengiz, M. (2010). Synthesis, structure and solvent-extraction properties of tridentate oxime ligands and their cobalt(II), nickel(II), copper(II), zinc(II) complexes. Chemical Papers, 64, 25–33. DOI: 10.2478/s11696-009-0095-6. http://dx.doi.org/10.2478/s11696-009-0095-610.2478/s11696-009-0095-6Search in Google Scholar
[7] Dong, X. Y., Wang, R., Li, J. B., Zang, S. Q., Hou, H. W., & Mak, T. C. W. (2013). A tetranuclear Cu4(μ3-OH)2-based metal-organic framework (MOF) with sulfonate-carboxylate ligands for proton conduction. Chemical Communications, 49, 10590–10592. DOI: 10.1039/c3cc46226a. http://dx.doi.org/10.1039/c3cc46226a10.1039/c3cc46226aSearch in Google Scholar
[8] Hermes, S., Schröter, M. K., Schmid, R., Khodeir, L., Muhler, M., Tissler, A., Fischer, R. W., & Fischer, R. A. (2005). Metal@MOF: Loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. Angewandte Chemie International Edition, 44, 6237–6241. DOI: 10.1002/anie.200462515. http://dx.doi.org/10.1002/anie.20046251510.1002/anie.200462515Search in Google Scholar
[9] Huang, X. Y., Yue, K. F., Jin, J. C., Liu, J. Q., Wang, C. J., Wang, Y. Y., & Shi, Q. Z. (2010). Three-dimensional fivefold interpenetrating microporous metal-organic framework based on mixed flexible ligands. Inorganic Chemistry Communications, 13, 338–341. DOI: 10.1016/j.inoche.2009.12.010. http://dx.doi.org/10.1016/j.inoche.2009.12.01010.1016/j.inoche.2009.12.010Search in Google Scholar
[10] Kondo, M., Shimamura, M., Noro, S. I., Minakoshi, S., Asami, A., Seki, K., & Kitagawa, S. (2000). Microporous materials constructed from the interpenetrated coordination networks. Structures and methane adsorption properties. Chemistry of Materials, 12, 1288–1299. DOI: 10.1021/cm990612m. 10.1021/cm990612mSearch in Google Scholar
[11] Li, L., Zhang, S. B., Zhang, X. S., & Zheng, G. D. (2007). Polyamide thin film composite membranes prepared from 3,4′,5-biphenyltriacyl chloride, 3,3′,5,5′-biphenyl tetraacyl chloride and m-phenylenediamine. Journal of Membrane Science, 289, 258–267. DOI: 10.1016/j.memsci.2006.12.007. http://dx.doi.org/10.1016/j.memsci.2006.12.00710.1016/j.memsci.2006.12.007Search in Google Scholar
[12] Li, D. S., Fu, F., Zhao, J., Wu, Y. P., Du, M., Zou, K., Dong, W. W., & Wang, Y. Y. (2010). Unique 3D self-penetrating CoII and NiII coordination frameworks with a new (44.610.8) network topology. Dalton Transactions, 39, 11522–11525. DOI: 10.1039/c0dt00900h. http://dx.doi.org/10.1039/c0dt00900h10.1039/c0dt00900hSearch in Google Scholar
[13] Lin, X., Jia, J. H., Zhao, X. B., Thomas, K. M., Blake, A. J., Walker, G. S., Champness, N. R., Hubberstey, P., & Schröder, M. (2006). High H2 adsorption by coordinationframework materials. Angewandte Chemie International Edition, 45, 7358–7364. DOI: 10.1002/anie.200601991. http://dx.doi.org/10.1002/anie.20060199110.1002/anie.200601991Search in Google Scholar
[14] Lin, X., Telepeni, I., Blake, A. J., Dailly, A., Brown, C. M., Simmons, J. M., Zoppi, M., Walker, G. S., Thomas, K. M., Mays, T. J., Hubberstey, P., Champness, N. R., & Schröder, M. (2009). High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: The role of pore size, ligand functionalization and exposed metal sites. Journal of the American Chemical Society, 131, 2159–2171. DOI: 10.1021/ja806624j. http://dx.doi.org/10.1021/ja806624j10.1021/ja806624jSearch in Google Scholar
[15] Liu, B., Hou, L., Wang, Y. Y., Zhang, Y. N., Cui, L., & Shi, Q. Z. (2011). Two new self-penetrating metal-organic frameworks based on a flexible cyclohexanetetracarboxylate ligand. Inorganic Chemistry Communications, 14, 822–825. DOI: 10.1016/j.inoche.2011.02.018. http://dx.doi.org/10.1016/j.inoche.2011.02.01810.1016/j.inoche.2011.02.018Search in Google Scholar
[16] Ma, L. F., Qin, J. H., Han, M. L., Wang, L. Y., & Du, M. (2011). A unique 3-D chiral Zn(II) coordination framework with 1,2,3-benzenetricarboxyl and 4,4′-bipyridyl tectons showing 4-connected self-penetrating network and helical character. Inorganic Chemistry Communications, 14, 1584–1587. DOI: 10.1016/j.inoche.2011.06.008. http://dx.doi.org/10.1016/j.inoche.2011.06.00810.1016/j.inoche.2011.06.008Search in Google Scholar
[17] Nowell, H., Shan, N., Attfield, J. P., Jones, W., & Motherwell, W. D. S. (2003). The structure of cyclohexane-1,3cis,5cistricarboxylic acid, determined from powder X-ray diffraction data. Crystal Engineering, 6, 57–67. DOI: 10.1016/s1463-0184(02)00022-9. http://dx.doi.org/10.1016/S1463-0184(02)00022-910.1016/S1463-0184(02)00022-9Search in Google Scholar
[18] Ondrejovič, G., Koman, M., & Kotočová, A. (2008). Structural and electronic effects involving pyridine rings in 4-methylpyridine Cu4OX6L4 complexes. I. Vibrational spectra of Cu4OBrnCl(6−n )(4-Mepy)4 complexes. Chemical Papers, 62, 480–486. DOI: 10.2478/s11696-008-0055-6. http://dx.doi.org/10.2478/s11696-008-0055-610.2478/s11696-008-0055-6Search in Google Scholar
[19] Ondrejovič, G., Kotočovľa, P. (2010a). Synthesis, spectral and electrochemical study of coordination molecules Cu4OX6L4: 4-cyanopyridine Cu4OBrnCl(6−n)(4-CNpy)4 complexes. Chemical Papers, 64, 329–338. DOI: 10.2478/s11696-010-0015-9. http://dx.doi.org/10.2478/s11696-010-0015-910.2478/s11696-010-0015-9Search in Google Scholar
[20] Ondrejovič, G., Kotočovľa, P. (2010b). Synthesis, spectral and electrochemical study of coordination molecules Cu4OX6L4: 3-cyanopyridine Cu4OBrnCl(6−n)(3-CNpy)4 complexes. Chemical Papers, 64, 339–345. DOI: 10.2478/s11696-010-0016-8. http://dx.doi.org/10.2478/s11696-010-0016-810.2478/s11696-010-0016-8Search in Google Scholar
[21] Reineke, T. M., Eddaoudi, M., Moler, D., O’Keeffe, M., & Yaghi, O. M. (2000). Large free volume in maximally interpenetrating networks: The role of secondary building units exemplified by Tb2(ADB)3[(CH3)2SO]4 · 16[(CH3)2SO]. Journal of the American Chemical Society, 122, 4843–4844. DOI: 10.1021/ja000363z. http://dx.doi.org/10.1021/ja000363z10.1021/ja000363zSearch in Google Scholar
[22] Rowsell, J. L. C., & Yaghi, O.M. (2005). Strategies for hydrogen storage in metal-organic frameworks. Angewandte Chemie International Edition, 44, 4670–4679. DOI: 10.1002/anie.200462786. http://dx.doi.org/10.1002/anie.20046278610.1002/anie.200462786Search in Google Scholar PubMed
[23] Sheldrick, G.M. (1997). SHELXTL, Version 5.1. [computer software]. Madison, WI, USA: Bruker AXS. Search in Google Scholar
[24] Sheldrick, G. M. (2003). SADABS, Version 2.10. [computer software]. Göttingen, Germany: University of Göttingen. Search in Google Scholar
[25] Siemens (1998). SMART and SAINT, Version 5.0 [computer software]. Madison, WI, USA: Siemens AXS. Search in Google Scholar
[26] Steck, E. A., & Day, A. R. (1943). Reactions of phenanthraquinone and retenequinone with aldehydes and ammonium acetate in acetic acid solution. Journal of the American Chemical Society, 65, 452–456. DOI: 10.1021/ja01243a043. http://dx.doi.org/10.1021/ja01243a04310.1021/ja01243a043Search in Google Scholar
[27] Tan, J. T., Zhao, W. J., Chen, S. P., Li, X., Lu, Y. L., Feng, X., & Yang, X. W. (2012). Synthesis, structure and luminescent properties of two novel polynuclear complexes of 1,3-di(pyridin-2-yl)propane-1,3-dione. Chemical Papers, 66, 47–53. DOI: 10.2478/s11696-011-0109-z. http://dx.doi.org/10.2478/s11696-011-0109-z10.2478/s11696-011-0109-zSearch in Google Scholar
[28] Tranchemontagne, D. J., Mendoza-Cortés, J. L., O’Keeffea, M., & Yaghi, O. M. (2009). Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. Chemical Society Reviews, 38, 1257–1283. DOI: 10.1039/b817735j. http://dx.doi.org/10.1039/b817735j10.1039/b817735jSearch in Google Scholar PubMed
[29] Wang, H. Y., Gao, S., Huo, L. H., Ng, S. W., & Zhao, J. G. (2008). Three interpenetrated frameworks assembly from a long multicarboxylate ligand and transition metal. Crystal Growth & Design, 8, 665–670. DOI: 10.1021/cg700896j. http://dx.doi.org/10.1021/cg700896j10.1021/cg700896jSearch in Google Scholar
[30] Wei, Y. L., Li, J. B., Song, W. C., & Zang, S. Q. (2012). Five-fold interpenetrating diamondlike 3D metal-organic frameworks constructed from the rigid 1,2-di(pyridin-4-yl)ethane-1,2-diol ligand and aromatic carboxylate. Inorganic Chemistry Communications, 15, 16–20. DOI: 10.1016/j.inoche.2011.09.028. http://dx.doi.org/10.1016/j.inoche.2011.09.02810.1016/j.inoche.2011.09.028Search in Google Scholar
[31] Yan, S. W., Chen, H. Y., Xiao, D. R., He, J. H., Zhang, G. J., Sun, D. Z., Yuan, R., & Wang, E. B. (2012). An unprecedented 2D→3D polythreaded metal-lomefloxacin complex assembled from sidearm-containing 2D motifs. Inorganic Chemistry Communications, 15, 47–51. DOI: 10.1016/j.inoche.2011.09.036. http://dx.doi.org/10.1016/j.inoche.2011.09.03610.1016/j.inoche.2011.09.036Search in Google Scholar
[32] Yang, S. H., Lin, X., Blake, A. J., Thomas, K. M., Hubberstey, P., Champness, N. R., & Schröder, M. (2008). Enhancement of H2 adsorption in Li+-exchanged co-ordination framework materials. Chemical Communication, 46, 6108–6110. DOI: 10.1039/b814155j. http://dx.doi.org/10.1039/b814155j10.1039/b814155jSearch in Google Scholar PubMed
[33] Yu, F. S., Zhang, L. L., Tan, J. T., Li, X., Wang, L. J., Liu, F., & Yang, X. W. (2011). Synthesis, crystal structure and thermal analysis of a copper(II) complex with imidazo[4,5-f ]1,10-phenantroline. Chemical Papers, 65, 23–28. DOI: 10.2478/s11696-010-0087-6. http://dx.doi.org/10.2478/s11696-010-0087-610.2478/s11696-010-0087-6Search in Google Scholar
[34] Zhu, S. R., Zhang, H., Shao, M., Zhao, Y. M., & Li, M. X. (2008). Monomeric and polymeric structures derived from 3,3′,4,4′-biphenyltetracarboxylic acid, phenanthroline and metal ions. Transition Metal Chemistry, 33, 669–680. DOI: 10.1007/s11243-008-9095-6. http://dx.doi.org/10.1007/s11243-008-9095-610.1007/s11243-008-9095-6Search in Google Scholar
[35] Zhang, C. H., Chen, Y. G., Tang, Q., & Liu, S. X. (2012a). Polynuclear complexes of main group and transition metals with polyaminopolycarboxylate and polyoxometalate. Dalton Transactions, 41, 9971–9978. DOI: 10.1039/c2dt12508k. http://dx.doi.org/10.1039/c2dt12508k10.1039/c2dt12508kSearch in Google Scholar PubMed
[36] Zhang, X., Li, Z. J., Qin, Y. Y., & Yao, Y. G. (2012b). Polycatenated bilayer motif constructed from flexible N,N′-bipyridyl and aromatic dicarboxylate ligands. Inorganic Chemistry Communications, 15, 1–4. DOI: 10.1016/j.inoche.2011.08.023. http://dx.doi.org/10.1016/j.inoche.2011.08.02310.1016/j.inoche.2011.08.023Search in Google Scholar
© 2014 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Chemical preparation and applications of silver dendrites
 - Evaluation of antioxidant activity and DNA cleavage protection effect of naphthyl hydroxamic acid derivatives through conventional and fluorescence microscopic methods
 - Modelling of ORL1 receptor-ligand interactions
 - Kinetics of enantioselective liquid-liquid extraction of phenylglycine enantiomers using a BINAP-copper complex as chiral selector
 - Diffusive transport of Cu(II) ions through thin ion imprinted polymeric membranes
 - Magnetic mixed matrix membranes in air separation
 - The use of impregnated perlite as a heterogeneous catalyst for biodiesel production from marula oil
 - Nitrobenzene degradation by micro-sized iron and electron efficiency evaluation
 - RP-HPLC-UV-ESI-MS phytochemical analysis of fruits of Conocarpus erectus L.
 - Residue analysis of fosthiazate in cucumber and soil by QuEChERS and GC-MS
 - Degradation of polylactide using basic ionic liquid imidazolium acetates
 - Ring-opening polymerisation of ɛ-caprolactone catalysed by Brønsted acids
 - Click synthesis by Diels-Alder reaction and characterisation of hydroxypropyl methylcellulose-based hydrogels
 - Preparation and physical properties of chitosan-coated calcium sulphate whiskers
 - A facile synthetic route for antineoplastic drug GDC-0449
 - Two new frameworks for biphenyl-3,3′,5,5′-tetracarboxylic acid and nitrogen-containing organics
 - Antioxidant and binding properties of methanol extracts from indigo plant leaves
 - Dithiols as more effective than monothiols in protecting biomacromolecules from free-radical-mediated damage: in vitro oxidative degradation of high-molar-mass hyaluronan
 
Articles in the same Issue
- Chemical preparation and applications of silver dendrites
 - Evaluation of antioxidant activity and DNA cleavage protection effect of naphthyl hydroxamic acid derivatives through conventional and fluorescence microscopic methods
 - Modelling of ORL1 receptor-ligand interactions
 - Kinetics of enantioselective liquid-liquid extraction of phenylglycine enantiomers using a BINAP-copper complex as chiral selector
 - Diffusive transport of Cu(II) ions through thin ion imprinted polymeric membranes
 - Magnetic mixed matrix membranes in air separation
 - The use of impregnated perlite as a heterogeneous catalyst for biodiesel production from marula oil
 - Nitrobenzene degradation by micro-sized iron and electron efficiency evaluation
 - RP-HPLC-UV-ESI-MS phytochemical analysis of fruits of Conocarpus erectus L.
 - Residue analysis of fosthiazate in cucumber and soil by QuEChERS and GC-MS
 - Degradation of polylactide using basic ionic liquid imidazolium acetates
 - Ring-opening polymerisation of ɛ-caprolactone catalysed by Brønsted acids
 - Click synthesis by Diels-Alder reaction and characterisation of hydroxypropyl methylcellulose-based hydrogels
 - Preparation and physical properties of chitosan-coated calcium sulphate whiskers
 - A facile synthetic route for antineoplastic drug GDC-0449
 - Two new frameworks for biphenyl-3,3′,5,5′-tetracarboxylic acid and nitrogen-containing organics
 - Antioxidant and binding properties of methanol extracts from indigo plant leaves
 - Dithiols as more effective than monothiols in protecting biomacromolecules from free-radical-mediated damage: in vitro oxidative degradation of high-molar-mass hyaluronan