Home Two new frameworks for biphenyl-3,3′,5,5′-tetracarboxylic acid and nitrogen-containing organics
Article
Licensed
Unlicensed Requires Authentication

Two new frameworks for biphenyl-3,3′,5,5′-tetracarboxylic acid and nitrogen-containing organics

  • Wen-Jie Zhao EMAIL logo , Jin-Ting Tan , Xia Li , Ying-Li Lu , Xing Feng and Xu-Wu Yang
Published/Copyright: June 24, 2014
Become an author with De Gruyter Brill

Abstract

Two complexes, {Zn(bptc)0.5(bib)}n (I) and {Mn2(bptc)(pip)(H2O)}n (II) (H4bptc = biphenyl-3,3′,5,5′-tetracarboxylic acid; bib = 1,4-bis(2-methylimidazol-1-yl)butane; pip = 2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline) were synthesized and characterized by single-crystal X-ray diffraction, elemental analysis, IR, TGA and solid fluorescence spectra. The results show that I and II both have 3D network architectures. I has porous architecture with a 162 topology structure. Effective porosity calculated by Platon is 5.5 %. Moreover, it has a two-fold interpenetrating structure allowed by a 70.73° torsion between the benzene rings of the bptc4− ligand and the flexibility of bib. II has a tetranuclear structure composed of binuclear architecture units with the torsion of 43.44° between the benzene rings of the bptc4− ligand. TGA shows that the skeletons of I and II are stable up to 372°C and 553°C, respectively. I exhibits fluorescence.

[1] Batten, S. R., & Robson, R. (1998). Interpenetrating nets: Ordered, periodic entanglement. Angewandte Chemie International Edition, 37, 1460–1494. DOI: 10.1002/(sici)1521-3773(19980619)37:11〈1460::aid-anie1460〉3.0.co;2-z. http://dx.doi.org/10.1002/(SICI)1521-3773(19980619)37:11<1460::AID-ANIE1460>3.0.CO;2-Z10.1002/(SICI)1521-3773(19980619)37:11<1460::AID-ANIE1460>3.0.CO;2-ZSearch in Google Scholar

[2] Chen, B. L., Ockwig, N. W., Fronczek, F. R., Contreras, D. S., & Yaghi, O. M. (2005a). Transformation of a metal-organic framework from the NbO to PtS net. Inorganic Chemistry, 44, 181–183. DOI: 10.1021/ic048612y. http://dx.doi.org/10.1021/ic048612y10.1021/ic048612ySearch in Google Scholar

[3] Chen, B. L., Ockwig, N. W., Millward, A. R., Contreras, D. S., & Yaghi, O. M. (2005b). High H2 adsorption in a microporous metal-organic framework with open metal sites. Angewandte Chemie International Edition, 44, 4745–4749. DOI: 10.1002/anie.200462787. http://dx.doi.org/10.1002/anie.20046278710.1002/anie.200462787Search in Google Scholar

[4] Chen, B., Ma, S. Q., Zapata, F., Lobkovsky, E. B., & Yang, J. (2006). Hydrogen adsorption in an interpenetrated dynamic metal-organic framework. Inorganic Chemistry, 45, 5718–5720. DOI: 10.10 21/ic060437t. http://dx.doi.org/10.1021/ic060437t10.1021/ic060437tSearch in Google Scholar

[5] Choi, H. S., & Suh, M. P. (2009). Highly selective CO2 capture in flexible 3D coordination polymer networks. Angewandte Chemie, 121, 6997–7001. DOI: 10.1002/ange.200902836. http://dx.doi.org/10.1002/ange.20090283610.1002/ange.200902836Search in Google Scholar

[6] Dede, B., Karipcin, F., Arabalı, F., & Cengiz, M. (2010). Synthesis, structure and solvent-extraction properties of tridentate oxime ligands and their cobalt(II), nickel(II), copper(II), zinc(II) complexes. Chemical Papers, 64, 25–33. DOI: 10.2478/s11696-009-0095-6. http://dx.doi.org/10.2478/s11696-009-0095-610.2478/s11696-009-0095-6Search in Google Scholar

[7] Dong, X. Y., Wang, R., Li, J. B., Zang, S. Q., Hou, H. W., & Mak, T. C. W. (2013). A tetranuclear Cu4(μ3-OH)2-based metal-organic framework (MOF) with sulfonate-carboxylate ligands for proton conduction. Chemical Communications, 49, 10590–10592. DOI: 10.1039/c3cc46226a. http://dx.doi.org/10.1039/c3cc46226a10.1039/c3cc46226aSearch in Google Scholar

[8] Hermes, S., Schröter, M. K., Schmid, R., Khodeir, L., Muhler, M., Tissler, A., Fischer, R. W., & Fischer, R. A. (2005). Metal@MOF: Loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. Angewandte Chemie International Edition, 44, 6237–6241. DOI: 10.1002/anie.200462515. http://dx.doi.org/10.1002/anie.20046251510.1002/anie.200462515Search in Google Scholar

[9] Huang, X. Y., Yue, K. F., Jin, J. C., Liu, J. Q., Wang, C. J., Wang, Y. Y., & Shi, Q. Z. (2010). Three-dimensional fivefold interpenetrating microporous metal-organic framework based on mixed flexible ligands. Inorganic Chemistry Communications, 13, 338–341. DOI: 10.1016/j.inoche.2009.12.010. http://dx.doi.org/10.1016/j.inoche.2009.12.01010.1016/j.inoche.2009.12.010Search in Google Scholar

[10] Kondo, M., Shimamura, M., Noro, S. I., Minakoshi, S., Asami, A., Seki, K., & Kitagawa, S. (2000). Microporous materials constructed from the interpenetrated coordination networks. Structures and methane adsorption properties. Chemistry of Materials, 12, 1288–1299. DOI: 10.1021/cm990612m. 10.1021/cm990612mSearch in Google Scholar

[11] Li, L., Zhang, S. B., Zhang, X. S., & Zheng, G. D. (2007). Polyamide thin film composite membranes prepared from 3,4′,5-biphenyltriacyl chloride, 3,3′,5,5′-biphenyl tetraacyl chloride and m-phenylenediamine. Journal of Membrane Science, 289, 258–267. DOI: 10.1016/j.memsci.2006.12.007. http://dx.doi.org/10.1016/j.memsci.2006.12.00710.1016/j.memsci.2006.12.007Search in Google Scholar

[12] Li, D. S., Fu, F., Zhao, J., Wu, Y. P., Du, M., Zou, K., Dong, W. W., & Wang, Y. Y. (2010). Unique 3D self-penetrating CoII and NiII coordination frameworks with a new (44.610.8) network topology. Dalton Transactions, 39, 11522–11525. DOI: 10.1039/c0dt00900h. http://dx.doi.org/10.1039/c0dt00900h10.1039/c0dt00900hSearch in Google Scholar

[13] Lin, X., Jia, J. H., Zhao, X. B., Thomas, K. M., Blake, A. J., Walker, G. S., Champness, N. R., Hubberstey, P., & Schröder, M. (2006). High H2 adsorption by coordinationframework materials. Angewandte Chemie International Edition, 45, 7358–7364. DOI: 10.1002/anie.200601991. http://dx.doi.org/10.1002/anie.20060199110.1002/anie.200601991Search in Google Scholar

[14] Lin, X., Telepeni, I., Blake, A. J., Dailly, A., Brown, C. M., Simmons, J. M., Zoppi, M., Walker, G. S., Thomas, K. M., Mays, T. J., Hubberstey, P., Champness, N. R., & Schröder, M. (2009). High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: The role of pore size, ligand functionalization and exposed metal sites. Journal of the American Chemical Society, 131, 2159–2171. DOI: 10.1021/ja806624j. http://dx.doi.org/10.1021/ja806624j10.1021/ja806624jSearch in Google Scholar

[15] Liu, B., Hou, L., Wang, Y. Y., Zhang, Y. N., Cui, L., & Shi, Q. Z. (2011). Two new self-penetrating metal-organic frameworks based on a flexible cyclohexanetetracarboxylate ligand. Inorganic Chemistry Communications, 14, 822–825. DOI: 10.1016/j.inoche.2011.02.018. http://dx.doi.org/10.1016/j.inoche.2011.02.01810.1016/j.inoche.2011.02.018Search in Google Scholar

[16] Ma, L. F., Qin, J. H., Han, M. L., Wang, L. Y., & Du, M. (2011). A unique 3-D chiral Zn(II) coordination framework with 1,2,3-benzenetricarboxyl and 4,4′-bipyridyl tectons showing 4-connected self-penetrating network and helical character. Inorganic Chemistry Communications, 14, 1584–1587. DOI: 10.1016/j.inoche.2011.06.008. http://dx.doi.org/10.1016/j.inoche.2011.06.00810.1016/j.inoche.2011.06.008Search in Google Scholar

[17] Nowell, H., Shan, N., Attfield, J. P., Jones, W., & Motherwell, W. D. S. (2003). The structure of cyclohexane-1,3cis,5cistricarboxylic acid, determined from powder X-ray diffraction data. Crystal Engineering, 6, 57–67. DOI: 10.1016/s1463-0184(02)00022-9. http://dx.doi.org/10.1016/S1463-0184(02)00022-910.1016/S1463-0184(02)00022-9Search in Google Scholar

[18] Ondrejovič, G., Koman, M., & Kotočová, A. (2008). Structural and electronic effects involving pyridine rings in 4-methylpyridine Cu4OX6L4 complexes. I. Vibrational spectra of Cu4OBrnCl(6−n )(4-Mepy)4 complexes. Chemical Papers, 62, 480–486. DOI: 10.2478/s11696-008-0055-6. http://dx.doi.org/10.2478/s11696-008-0055-610.2478/s11696-008-0055-6Search in Google Scholar

[19] Ondrejovič, G., Kotočovľa, P. (2010a). Synthesis, spectral and electrochemical study of coordination molecules Cu4OX6L4: 4-cyanopyridine Cu4OBrnCl(6−n)(4-CNpy)4 complexes. Chemical Papers, 64, 329–338. DOI: 10.2478/s11696-010-0015-9. http://dx.doi.org/10.2478/s11696-010-0015-910.2478/s11696-010-0015-9Search in Google Scholar

[20] Ondrejovič, G., Kotočovľa, P. (2010b). Synthesis, spectral and electrochemical study of coordination molecules Cu4OX6L4: 3-cyanopyridine Cu4OBrnCl(6−n)(3-CNpy)4 complexes. Chemical Papers, 64, 339–345. DOI: 10.2478/s11696-010-0016-8. http://dx.doi.org/10.2478/s11696-010-0016-810.2478/s11696-010-0016-8Search in Google Scholar

[21] Reineke, T. M., Eddaoudi, M., Moler, D., O’Keeffe, M., & Yaghi, O. M. (2000). Large free volume in maximally interpenetrating networks: The role of secondary building units exemplified by Tb2(ADB)3[(CH3)2SO]4 · 16[(CH3)2SO]. Journal of the American Chemical Society, 122, 4843–4844. DOI: 10.1021/ja000363z. http://dx.doi.org/10.1021/ja000363z10.1021/ja000363zSearch in Google Scholar

[22] Rowsell, J. L. C., & Yaghi, O.M. (2005). Strategies for hydrogen storage in metal-organic frameworks. Angewandte Chemie International Edition, 44, 4670–4679. DOI: 10.1002/anie.200462786. http://dx.doi.org/10.1002/anie.20046278610.1002/anie.200462786Search in Google Scholar PubMed

[23] Sheldrick, G.M. (1997). SHELXTL, Version 5.1. [computer software]. Madison, WI, USA: Bruker AXS. Search in Google Scholar

[24] Sheldrick, G. M. (2003). SADABS, Version 2.10. [computer software]. Göttingen, Germany: University of Göttingen. Search in Google Scholar

[25] Siemens (1998). SMART and SAINT, Version 5.0 [computer software]. Madison, WI, USA: Siemens AXS. Search in Google Scholar

[26] Steck, E. A., & Day, A. R. (1943). Reactions of phenanthraquinone and retenequinone with aldehydes and ammonium acetate in acetic acid solution. Journal of the American Chemical Society, 65, 452–456. DOI: 10.1021/ja01243a043. http://dx.doi.org/10.1021/ja01243a04310.1021/ja01243a043Search in Google Scholar

[27] Tan, J. T., Zhao, W. J., Chen, S. P., Li, X., Lu, Y. L., Feng, X., & Yang, X. W. (2012). Synthesis, structure and luminescent properties of two novel polynuclear complexes of 1,3-di(pyridin-2-yl)propane-1,3-dione. Chemical Papers, 66, 47–53. DOI: 10.2478/s11696-011-0109-z. http://dx.doi.org/10.2478/s11696-011-0109-z10.2478/s11696-011-0109-zSearch in Google Scholar

[28] Tranchemontagne, D. J., Mendoza-Cortés, J. L., O’Keeffea, M., & Yaghi, O. M. (2009). Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. Chemical Society Reviews, 38, 1257–1283. DOI: 10.1039/b817735j. http://dx.doi.org/10.1039/b817735j10.1039/b817735jSearch in Google Scholar PubMed

[29] Wang, H. Y., Gao, S., Huo, L. H., Ng, S. W., & Zhao, J. G. (2008). Three interpenetrated frameworks assembly from a long multicarboxylate ligand and transition metal. Crystal Growth & Design, 8, 665–670. DOI: 10.1021/cg700896j. http://dx.doi.org/10.1021/cg700896j10.1021/cg700896jSearch in Google Scholar

[30] Wei, Y. L., Li, J. B., Song, W. C., & Zang, S. Q. (2012). Five-fold interpenetrating diamondlike 3D metal-organic frameworks constructed from the rigid 1,2-di(pyridin-4-yl)ethane-1,2-diol ligand and aromatic carboxylate. Inorganic Chemistry Communications, 15, 16–20. DOI: 10.1016/j.inoche.2011.09.028. http://dx.doi.org/10.1016/j.inoche.2011.09.02810.1016/j.inoche.2011.09.028Search in Google Scholar

[31] Yan, S. W., Chen, H. Y., Xiao, D. R., He, J. H., Zhang, G. J., Sun, D. Z., Yuan, R., & Wang, E. B. (2012). An unprecedented 2D→3D polythreaded metal-lomefloxacin complex assembled from sidearm-containing 2D motifs. Inorganic Chemistry Communications, 15, 47–51. DOI: 10.1016/j.inoche.2011.09.036. http://dx.doi.org/10.1016/j.inoche.2011.09.03610.1016/j.inoche.2011.09.036Search in Google Scholar

[32] Yang, S. H., Lin, X., Blake, A. J., Thomas, K. M., Hubberstey, P., Champness, N. R., & Schröder, M. (2008). Enhancement of H2 adsorption in Li+-exchanged co-ordination framework materials. Chemical Communication, 46, 6108–6110. DOI: 10.1039/b814155j. http://dx.doi.org/10.1039/b814155j10.1039/b814155jSearch in Google Scholar PubMed

[33] Yu, F. S., Zhang, L. L., Tan, J. T., Li, X., Wang, L. J., Liu, F., & Yang, X. W. (2011). Synthesis, crystal structure and thermal analysis of a copper(II) complex with imidazo[4,5-f ]1,10-phenantroline. Chemical Papers, 65, 23–28. DOI: 10.2478/s11696-010-0087-6. http://dx.doi.org/10.2478/s11696-010-0087-610.2478/s11696-010-0087-6Search in Google Scholar

[34] Zhu, S. R., Zhang, H., Shao, M., Zhao, Y. M., & Li, M. X. (2008). Monomeric and polymeric structures derived from 3,3′,4,4′-biphenyltetracarboxylic acid, phenanthroline and metal ions. Transition Metal Chemistry, 33, 669–680. DOI: 10.1007/s11243-008-9095-6. http://dx.doi.org/10.1007/s11243-008-9095-610.1007/s11243-008-9095-6Search in Google Scholar

[35] Zhang, C. H., Chen, Y. G., Tang, Q., & Liu, S. X. (2012a). Polynuclear complexes of main group and transition metals with polyaminopolycarboxylate and polyoxometalate. Dalton Transactions, 41, 9971–9978. DOI: 10.1039/c2dt12508k. http://dx.doi.org/10.1039/c2dt12508k10.1039/c2dt12508kSearch in Google Scholar PubMed

[36] Zhang, X., Li, Z. J., Qin, Y. Y., & Yao, Y. G. (2012b). Polycatenated bilayer motif constructed from flexible N,N′-bipyridyl and aromatic dicarboxylate ligands. Inorganic Chemistry Communications, 15, 1–4. DOI: 10.1016/j.inoche.2011.08.023. http://dx.doi.org/10.1016/j.inoche.2011.08.02310.1016/j.inoche.2011.08.023Search in Google Scholar

Published Online: 2014-6-24
Published in Print: 2014-10-1

© 2014 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Chemical preparation and applications of silver dendrites
  2. Evaluation of antioxidant activity and DNA cleavage protection effect of naphthyl hydroxamic acid derivatives through conventional and fluorescence microscopic methods
  3. Modelling of ORL1 receptor-ligand interactions
  4. Kinetics of enantioselective liquid-liquid extraction of phenylglycine enantiomers using a BINAP-copper complex as chiral selector
  5. Diffusive transport of Cu(II) ions through thin ion imprinted polymeric membranes
  6. Magnetic mixed matrix membranes in air separation
  7. The use of impregnated perlite as a heterogeneous catalyst for biodiesel production from marula oil
  8. Nitrobenzene degradation by micro-sized iron and electron efficiency evaluation
  9. RP-HPLC-UV-ESI-MS phytochemical analysis of fruits of Conocarpus erectus L.
  10. Residue analysis of fosthiazate in cucumber and soil by QuEChERS and GC-MS
  11. Degradation of polylactide using basic ionic liquid imidazolium acetates
  12. Ring-opening polymerisation of ɛ-caprolactone catalysed by Brønsted acids
  13. Click synthesis by Diels-Alder reaction and characterisation of hydroxypropyl methylcellulose-based hydrogels
  14. Preparation and physical properties of chitosan-coated calcium sulphate whiskers
  15. A facile synthetic route for antineoplastic drug GDC-0449
  16. Two new frameworks for biphenyl-3,3′,5,5′-tetracarboxylic acid and nitrogen-containing organics
  17. Antioxidant and binding properties of methanol extracts from indigo plant leaves
  18. Dithiols as more effective than monothiols in protecting biomacromolecules from free-radical-mediated damage: in vitro oxidative degradation of high-molar-mass hyaluronan
Downloaded on 4.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-014-0584-0/html
Scroll to top button