Home Dithiols as more effective than monothiols in protecting biomacromolecules from free-radical-mediated damage: in vitro oxidative degradation of high-molar-mass hyaluronan
Article
Licensed
Unlicensed Requires Authentication

Dithiols as more effective than monothiols in protecting biomacromolecules from free-radical-mediated damage: in vitro oxidative degradation of high-molar-mass hyaluronan

  • Mária Baňasová EMAIL logo , Katarína Valachová , Ivo Juránek and Ladislav Šoltés
Published/Copyright: June 24, 2014
Become an author with De Gruyter Brill

Abstract

Oxidative stress and the resulting damage to cellular and extracellular components has been observed in a variety of degenerative processes, including degenerative joint disorders, where high-molar-mass hyaluronan (HA) is often found to be massively degraded. The present study sought to test the hypothesis that dithiols are more effective in protecting biomacromolecules from free-radicalmediated damage than monothiols. The materials/thiols tested included bucillamine (BUC), dithioerythritol (DTE), dithiothreitol (DTT) and glutathione (GSH), as a reference, for their effectiveness in protecting HA from oxidative degradation induced in vitro. Since HA degradation results in a decrease in its dynamic viscosity, rotational viscometry was applied to follow HA oxidative degradation. The free-radical-scavenging activities of the thiols tested were determined by 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) and di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH) assays. It was found that all the dithiols in the concentration range tested protected HA from the oxidative degradation. On the other hand, monothiol GSH exerted protection only at high concentrations (10 μmol L−1 and 100 μmol L−1) and 1 μmol L−1 of GSH even exhibited a prodegradative effect. The ABTS assay revealed free-radical scavenging activities in the following order: BUC, DTT, DTE, GSH, and that of the DPPH assay: BUC, DTE, DTT, GSH. In conclusion, it was demonstrated that dithiols may be more effective than monothiols in affording biomacromolecule protection from oxidative degradation.

[1] Afonso, V., Champy, R., Mitrovic, D., Collin, P., & Lomri, A. (2007). Reactive oxygen species and superoxide dismutases: Role in joint diseases. Joint Bone Spine, 74, 324–329. DOI: 10.1016/j.jbspin.2007.02.002. http://dx.doi.org/10.1016/j.jbspin.2007.02.00210.1016/j.jbspin.2007.02.002Search in Google Scholar

[2] Apak, R., Gorinstein, S., Böhm, V., Schaich, K. M., Özyürek, M., & Güçlü, K. (2013). Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC Technical Report). Pure and Applied Chemistry, 85, 957–998. DOI: 10.1351/pac-rep-12-07-15. http://dx.doi.org/10.1351/PAC-REP-12-07-1510.1351/PAC-REP-12-07-15Search in Google Scholar

[3] Buettner, G. R., & Schafer, F. Q. (2002). Ascorbate (vitamin C), its antioxidant chemistry. The virtual free radicalzschool for oxygen society. Retreived March, 22, 2014, from http://www.healthcare.uiowa.edu/corefacilities/esr/publications/buettnerpubs/pdf/Buettner-Ascorbate-Chemistry-1.pdf Search in Google Scholar

[4] Chang, J. Y. (1997). A two-stage mechanism for the reductive unfolding of disulfide-containing proteins. Journal of Biological Chemistry, 272, 69–75. DOI: 10.1074/jbc.272.1.69. 10.1074/jbc.272.1.69Search in Google Scholar

[5] Cheng, Z. H., Moore, J., & Yu, L. L. (2006). High-throughput relative DPPH radical scavenging capacity assay. Journal of Agricultural and Food Chemistry, 54, 7429–7436. DOI: 10.1021/jf0611668. http://dx.doi.org/10.1021/jf061166810.1021/jf0611668Search in Google Scholar

[6] Giles, G. I., Tasker, K. M., & Jacob, C. (2002). Oxidation of biological thiols by highly reactive disulfide-S-oxides. General Physiology and Biophysics, 21, 65–72. Search in Google Scholar

[7] Govindaraju, K., Govindaraju, V., & Eidelman, D. H. (2003). A analysis of glutathione in rat airway surface liquid by capillary zone electrophoresis with conductivity detection. Journal of Chromatography B, 788, 369–376. DOI: 10.1016/s1570-0232(03)00061-8. http://dx.doi.org/10.1016/S1570-0232(03)00061-810.1016/S1570-0232(03)00061-8Search in Google Scholar

[8] Hrabárová, E., Gemeiner, P., & Šoltés, L. (2007). Peroxynitrite: in vivo and in vitro synthesis and oxidant degradative action on biological systems regarding biomolecular injury and in-flammatory processes. Chemical Papers, 61, 417–437. DOI: 10.2478/s11696-007-0058-8. http://dx.doi.org/10.2478/s11696-007-0058-810.2478/s11696-007-0058-8Search in Google Scholar

[9] Kładna, A., Aboul-Enein, H. Y., Kruk, I., Michalska, T., & Lichszteld, K. (2006). Anti-oxidant and pro-oxidant behaviour of bucillamine. Luminescence, 21, 90–97. DOI: 10.1002/bio.890. http://dx.doi.org/10.1002/bio.89010.1002/bio.890Search in Google Scholar PubMed

[10] Lima, A. I. G., Corticeiro, S. C., & Figueira, E. M. A. P. (2006). Glutathione-mediated cadmium sequestration in Rhizobium leguminosarum. Enzyme and Microbial Technology, 39, 763–769. DOI: 10.1016/j.enzmictec.2005.12.009. http://dx.doi.org/10.1016/j.enzmictec.2005.12.00910.1016/j.enzmictec.2005.12.009Search in Google Scholar

[11] Magalhães, L.M., Segundo, M. A., Reis, S., & Lima, J. L. F. C. (2008). Methodological aspects about in vitro evaluation of antioxidant properties. Analytica Chimica Acta, 613, 1–19. DOI: 10.1016/j.aca.2008.02.047. http://dx.doi.org/10.1016/j.aca.2008.02.04710.1016/j.aca.2008.02.047Search in Google Scholar PubMed

[12] Mazor, D., Greenberg, L., Shamir, D., Meyerstein, D., & Meyerstein, N. (2006). Antioxidant properties of bucillamine: possible mode of action. Biochemical and Biophysical Research Communications, 349, 1171–1175. DOI: 10.1016/j.bbrc.2006.08.155. http://dx.doi.org/10.1016/j.bbrc.2006.08.15510.1016/j.bbrc.2006.08.155Search in Google Scholar PubMed

[13] Meyer, K., & Palmer, J. W. (1934). The polysaccharide of the vitreous humor. Journal of Biological Chemistry, 107, 629–634. 10.1016/S0021-9258(18)75338-6Search in Google Scholar

[14] Moskaug, J., R. (2005). Polyphenols and glutathione synthesis regulation. American Journal of Clinical Nutrition, 81, 277S–283S. 10.1093/ajcn/81.1.277SSearch in Google Scholar

[15] Rahal, A., Kumar, A., Singh, V., Yadav, B., Tiwari, R., Chakraborty, S., & Dhama, K. (2014). Oxidative stress, prooxidants, and antioxidants: The interplay. BioMed Research International, 2014, 1–19. DOI: 10.1155/2014/761264. http://dx.doi.org/10.1155/2014/76126410.1155/2014/761264Search in Google Scholar

[16] Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26, 1231–1237. DOI: 10.1016/s0891-5849(98)00315-3. http://dx.doi.org/10.1016/S0891-5849(98)00315-310.1016/S0891-5849(98)00315-3Search in Google Scholar

[17] Scigelova, M., Green, P. S., Giannakopulos, A. E., Rodger, A., Crout, D. H. G., & Derrick, P. J. (2001). A practical protocol for the reduction of disulfide bonds in proteins prior to analysis by mass spectrometry. European Journal of Mass Spectrometry, 7, 29–34. http://dx.doi.org/10.1255/ejms.38510.1255/ejms.385Search in Google Scholar

[18] Šoltés, L., Stankovská, M., Brezová, V., Schiller, J., Arnhold, J., Kogan, G., & Gemeiner, P. (2006). Hyaluronan degradation by copper(II) chloride and ascorbate: rotational viscometric, EPR spin-trapping, and MALDI-TOF mass spectrometric investigations. Carbohydrate Research, 341, 2826–2834. DOI: 10.1016/j.carres.2006.09.019. http://dx.doi.org/10.1016/j.carres.2006.09.01910.1016/j.carres.2006.09.019Search in Google Scholar

[19] Valachová, K., Hrabárová, E., Dráfi, F., Juránek, I., Bauerová, K., Priesolová, E., Nagy, M., & Šoltés, L. (2010). Ascorbate and Cu(II)-induced oxidative degradation of high-molarmass hyaluronan. Pro- and antioxidative effects of some thiols. Neuroendocrinology Letters, 31, 101–104. Search in Google Scholar

[20] Ziouti, N., Triantaphyllidou, I. E., Assouti, M., Papageorgakopoulou, N., Kyriakopoulou, D., Anagnostides, S. T., & Vynios, D. H. (2004). Solid phase assays in glycoconjugate research: applications to the analysis of proteoglycans, glycosaminoglycans and metalloproteinases. Journal of Pharmaceutical and Biomedical Analysis, 34, 771–789. DOI: 10.1016/s0731-7085(03)00565-x. http://dx.doi.org/10.1016/S0731-7085(03)00565-X10.1016/S0731-7085(03)00565-XSearch in Google Scholar

Published Online: 2014-6-24
Published in Print: 2014-10-1

© 2014 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Chemical preparation and applications of silver dendrites
  2. Evaluation of antioxidant activity and DNA cleavage protection effect of naphthyl hydroxamic acid derivatives through conventional and fluorescence microscopic methods
  3. Modelling of ORL1 receptor-ligand interactions
  4. Kinetics of enantioselective liquid-liquid extraction of phenylglycine enantiomers using a BINAP-copper complex as chiral selector
  5. Diffusive transport of Cu(II) ions through thin ion imprinted polymeric membranes
  6. Magnetic mixed matrix membranes in air separation
  7. The use of impregnated perlite as a heterogeneous catalyst for biodiesel production from marula oil
  8. Nitrobenzene degradation by micro-sized iron and electron efficiency evaluation
  9. RP-HPLC-UV-ESI-MS phytochemical analysis of fruits of Conocarpus erectus L.
  10. Residue analysis of fosthiazate in cucumber and soil by QuEChERS and GC-MS
  11. Degradation of polylactide using basic ionic liquid imidazolium acetates
  12. Ring-opening polymerisation of ɛ-caprolactone catalysed by Brønsted acids
  13. Click synthesis by Diels-Alder reaction and characterisation of hydroxypropyl methylcellulose-based hydrogels
  14. Preparation and physical properties of chitosan-coated calcium sulphate whiskers
  15. A facile synthetic route for antineoplastic drug GDC-0449
  16. Two new frameworks for biphenyl-3,3′,5,5′-tetracarboxylic acid and nitrogen-containing organics
  17. Antioxidant and binding properties of methanol extracts from indigo plant leaves
  18. Dithiols as more effective than monothiols in protecting biomacromolecules from free-radical-mediated damage: in vitro oxidative degradation of high-molar-mass hyaluronan
Downloaded on 3.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-014-0591-1/html
Scroll to top button