Startseite The use of impregnated perlite as a heterogeneous catalyst for biodiesel production from marula oil
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The use of impregnated perlite as a heterogeneous catalyst for biodiesel production from marula oil

  • Edward Modiba EMAIL logo , Peter Osifo und Hilary Rutto
Veröffentlicht/Copyright: 24. Juni 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, biodiesel was produced from marula (Sclerocarya birrea) oil using impregnated perlite with potassium hydroxide (KOH) as a heterogeneous catalyst. The effect of experimental variables such as temperature (°C), reaction time (h), methanol to oil ratio (mass %), and catalyst to oil ratio (mass %) on the transesterification process were investigated. Using a central composite design (CCD), a mathematical model was developed to correlate the experimental variables with the percentage yield of biodiesel. The model showed that optimum conditions for biodiesel production were as follows: catalyst to oil ratio of 4.7 mass %, temperature of 70.4°C, methanol to oil ratio of 29.9 mass %, and reaction time of 3.6 h. The yield of 91.4 mass % of biodiesel was obtained. It was also possible to recycle and reuse the modified perlite up to three times without any significant change in its catalytic activity. The X-ray diffraction (XRD) and the Brunauer-Emmett-Teller (BET) surface area showed no modifications in the perlite structure. The results show that the important fuel properties of marula biodiesel meet the American Society for Testing and Materials (ASTM) biodiesel standard properties.

[1] Alcantara, A., Amores, J., Canoira, L., Fidalgo, E., Franco, M. J., & Navarro, A. (2000). Catalytic production of biodiesel from soy-bean oil, used frying oil and tallow. Biomass & Bioenergy, 18, 515–527..DOI: 10.1016/s0961-9534(00)00014-3. http://dx.doi.org/10.1016/S0961-9534(00)00014-310.1016/S0961-9534(00)00014-3Suche in Google Scholar

[2] Alkan, M., & Doğan, M. (2001). Adsorption of copper (II) onto perlite. Journal of Colloid and Interface Science, 243, 280–291. DOI: 10.1006/jcis.2001.7796. http://dx.doi.org/10.1006/jcis.2001.779610.1006/jcis.2001.7796Suche in Google Scholar

[3] American Society for Testing and Materials (2002). US standard: Standard specification for biodiesel buel (B100) blend stock for distillate fuels. ASTM D6751-02. West Conshohocken, PA, USA. DOI: 10.1520/D6751-02. 10.1520/D6751-02Suche in Google Scholar

[4] American Society for Testing and Materials (2011). US standard: Standard test method for cloud point of petroleum products. ASTM D2500. West Conshohocken, PA, USA. DOI: 10.1520/D2500-11. 10.1520/D2500-11Suche in Google Scholar

[5] American Society for Testing and Materials (2012a). US standard: Standard test method for kinematic viscosity of transparent and opaque liquids (and calculation of dynamic viscosity). ASTM D445. West Conshohocken, PA, USA. DOI: 10.1520/D0445-12. 10.1520/D0445-12Suche in Google Scholar

[6] American Society for Testing and Materials (2012b). US standard: Standard test method for density, relative density, or API gravity of crude petroleum and liquid petroleum products by hydrometer method. ASTM 1298. West Conshohocken, PA, USA. DOI: 10.1520/D1298-12B. 10.1520/D1298-12BSuche in Google Scholar

[7] American Society for Testing and Materials (2013). US standard: Standard test methods for flash point by Pensky-Martens closed cup tester. ASTM D93. West Conshohocken, PA, USA. DOI: 10.1520/D0093. 10.1520/D0093Suche in Google Scholar

[8] Gole, V. L., & Gogate, P. R. (2012). A review on intensification of synthesis of biodiesel from sustainable feed stock using sonochemical reactors. Chemical Engineering and Processing: Process Intensification, 53, 1–9. DOI: 10.1016/j.cep.2011.12.008. http://dx.doi.org/10.1016/j.cep.2011.12.00810.1016/j.cep.2011.12.008Suche in Google Scholar

[9] Karatepe, N., Ersoy-Meriçboyu, A., & Küçükbayrak, S. (1998). Preparation of fly ash-Ca(OH)2 sorbents by pressure hydration for SO2 removal. Energy Sources, 20, 945–953. DOI: 10.1080/00908319808970109. http://dx.doi.org/10.1080/0090831980897010910.1080/00908319808970109Suche in Google Scholar

[10] Koumanova, B., & Peeva-Antova, P. (2002). Adsorption of pchlorophenol from aqueous solutions on bentonite and perlite. Journal of Hazardous Materials, 90, 229–234. DOI: 10.1016/s0304-3894(01)00365-x. http://dx.doi.org/10.1016/S0304-3894(01)00365-X10.1016/S0304-3894(01)00365-XSuche in Google Scholar

[11] Kusuma, R. I., Hadionoto, J. P., Ayucitra, A., Soetaredjo, F. E., & Ismadji, S. (2013). Natural zeolite from Pacitan Indonesia, as catalyst support for transesterification of palm oil. Applied Clay Science, 74, 121–126. DOI: 10.1016/j.clay.2012.04.021. http://dx.doi.org/10.1016/j.clay.2012.04.02110.1016/j.clay.2012.04.021Suche in Google Scholar

[12] Lee, K. T., Mothar, A. M., Zainudin, N. F., Bhatia, S., & Mohamed, A. R. (2005). Optimum conditions for the preparation of flue gas desulfurization sorbent from rice husk ash. Fuel, 84, 143–151. DOI: 10.1016/j.fuel.2004.08.018 http://dx.doi.org/10.1016/j.fuel.2004.08.01810.1016/j.fuel.2004.08.018Suche in Google Scholar

[13] Leung, D. Y. C., & Guo, Y. (2006). Transesterification of neat and used frying oil: Optimization for biodiesel production. Fuel Processing Technology, 87, 883–890. DOI: 10.1016/j.fuproc.2006.06.003. http://dx.doi.org/10.1016/j.fuproc.2006.06.00310.1016/j.fuproc.2006.06.003Suche in Google Scholar

[14] Lin, L., Ying, D., Chaitep, S., & Vittayapadung, S. (2009). Biodiesel production from crude rice bran oil and properties as fuel. Applied Energy, 86, 681–688. DOI: 10.1016/j. apenergy.2008.06.002. http://dx.doi.org/10.1016/j.apenergy.2008.06.00210.1016/j.apenergy.2008.06.002Suche in Google Scholar

[15] Lu, P. M., Yuan, Z. H., Li, L. H., Wang, Z. M., & Luo, W. (2010). Biodiesel from different oil using fixed-bed and plug-flow reactors. Renewable Energy, 35, 283–287. DOI: 10.1016/j.renene.2009.07.011. http://dx.doi.org/10.1016/j.renene.2009.07.01110.1016/j.renene.2009.07.011Suche in Google Scholar

[16] Montgomery, D. C. (2001). Design and analysis of experiments (5th ed.). New York, NY, USA: Wiley. Suche in Google Scholar

[17] Rutto, H. L., & Enweremadu, C. C. (2011). Optimization of production variables of biodiesel from Manketti using response surface methodology. International Journal of Green Energy, 8, 768–779. DOI: 10.1080/15435075.2011.600375. http://dx.doi.org/10.1080/15435075.2011.60037510.1080/15435075.2011.600375Suche in Google Scholar

[18] Singh Chouhan, A. P., & Sarma, A. K. (2011). Modern heterogeneous catalysts for biodiesel production: A comprehensive review. Renewable and Sustainable Energy Reviews, 15, 4378–4399. DOI: 10.1016/j.rser.2011.07.112. http://dx.doi.org/10.1016/j.rser.2011.07.11210.1016/j.rser.2011.07.112Suche in Google Scholar

[19] Soetaredjo, F. E., Ayucitra, A., Ismadji, S., & Maukar, A. L. (2011). KOH/bentonite catalysts for transesterification of palm oil to biodiesel. Applied Clay Science, 53, 341–346. DOI: 10.1016/j.clay.2010.12.018. http://dx.doi.org/10.1016/j.clay.2010.12.01810.1016/j.clay.2010.12.018Suche in Google Scholar

[20] Sulaiman, S., Abdul-Aziz, A. R., & Aroua, M. K. (2013). Optimization and modeling of extraction of solid coconut waste oil. Journal of Food Engineering, 114, 228–234. DOI: 10.1016/j.jfoodeng.2012.08.025. http://dx.doi.org/10.1016/j.jfoodeng.2012.08.02510.1016/j.jfoodeng.2012.08.025Suche in Google Scholar

[21] Tekin, N., Kadıncı, E., Demirbaş, Ö., Alkan, M., Kara, A., & Doğgan, M. (2006). Surface properties of poly(vinylimidazole)-adsorbed expanded perlite. Microporous and Mesoporous Materials, 93, 125–133, DOI: 10.1016/j.micromeso.2006.02.009. http://dx.doi.org/10.1016/j.micromeso.2006.02.00910.1016/j.micromeso.2006.02.009Suche in Google Scholar

[22] Tsai, W. T., Lai, C. W., & Hsien, K. J. (2006). Characterization and adsorption properties of diatomaceous earth modified by hydrofluoric acid etching. Journal of Colloid and Interface Science, 297, 749–754. DOI: 10.1016/j.jcis.2005.10.058. http://dx.doi.org/10.1016/j.jcis.2005.10.05810.1016/j.jcis.2005.10.058Suche in Google Scholar

[23] Uosukainen, E., Läms, M. (1999). Optimization of enzymatic transesterification of rapeseed oil ester using response surface and principal component methodology. Enzyme and Microbial Technology, 25, 236–243. DOI: 10.1016/s0141-0229(99)00034-4. http://dx.doi.org/10.1016/S0141-0229(99)00034-410.1016/S0141-0229(99)00034-4Suche in Google Scholar

[24] Wang, Z. M., Lee, J. S., Park, J. Y., Wu, C. Z., & Yuan, Z. H. (2007). Novel biodiesel production technology from soybean soapstock. Korean Journal of Chemical Engineering, 24, 1027–1030. DOI: 10.1007/s11814-007-0115-6. http://dx.doi.org/10.1007/s11814-007-0115-610.1007/s11814-007-0115-6Suche in Google Scholar

[25] Xie, W. L., & Zhao, L. L. (2013). Production of biodiesel by transesterification of soybean oil using calcium supported tin oxides as heterogeneous catalysts. Energy Conversion and Management, 76, 55–62. DOI: 10.1016/j.enconman.2013.07.027. http://dx.doi.org/10.1016/j.enconman.2013.07.02710.1016/j.enconman.2013.07.027Suche in Google Scholar

Published Online: 2014-6-24
Published in Print: 2014-10-1

© 2014 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Chemical preparation and applications of silver dendrites
  2. Evaluation of antioxidant activity and DNA cleavage protection effect of naphthyl hydroxamic acid derivatives through conventional and fluorescence microscopic methods
  3. Modelling of ORL1 receptor-ligand interactions
  4. Kinetics of enantioselective liquid-liquid extraction of phenylglycine enantiomers using a BINAP-copper complex as chiral selector
  5. Diffusive transport of Cu(II) ions through thin ion imprinted polymeric membranes
  6. Magnetic mixed matrix membranes in air separation
  7. The use of impregnated perlite as a heterogeneous catalyst for biodiesel production from marula oil
  8. Nitrobenzene degradation by micro-sized iron and electron efficiency evaluation
  9. RP-HPLC-UV-ESI-MS phytochemical analysis of fruits of Conocarpus erectus L.
  10. Residue analysis of fosthiazate in cucumber and soil by QuEChERS and GC-MS
  11. Degradation of polylactide using basic ionic liquid imidazolium acetates
  12. Ring-opening polymerisation of ɛ-caprolactone catalysed by Brønsted acids
  13. Click synthesis by Diels-Alder reaction and characterisation of hydroxypropyl methylcellulose-based hydrogels
  14. Preparation and physical properties of chitosan-coated calcium sulphate whiskers
  15. A facile synthetic route for antineoplastic drug GDC-0449
  16. Two new frameworks for biphenyl-3,3′,5,5′-tetracarboxylic acid and nitrogen-containing organics
  17. Antioxidant and binding properties of methanol extracts from indigo plant leaves
  18. Dithiols as more effective than monothiols in protecting biomacromolecules from free-radical-mediated damage: in vitro oxidative degradation of high-molar-mass hyaluronan
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-014-0583-1/pdf
Button zum nach oben scrollen