Abstract
The application of secondary temperature models on growth rates of Lactobacillus rhamnosus GG, the much studied probiotic bacterium, is investigated. Growth parameters resulting from a primary fitting were modelled against temperature using the following models: Hinshelwood model (H), Ratkowsky extended model (RTK2), Zwietering model (ZWT), and cardinal temperature model with inflection (CTMI). As experienced by other authors, the RTK2, ZWT, and CTMI models provided the best statistical indices related to fitting the experimental data. Moreover, with the biological background, the following cardinal temperatures of L. rhamnosus GG resulted from the study by the model application: t min = 2.7°C, t opt = 44.4°C, t max = 52.0°C. The growth rate of the strain under study at optimal temperature was 0.88 log10(CFU mL−1 h−1).
[1] Alvarez, M. M., Aguirre-Ezkauriatza, E. J., Ramírez-Medrano, A., & Rodríquez-Sánchez, Á. (2010). Kinetic analysis and mathematical modeling of growth and lactic acid production of Lactobacillus casei var. rhamnosus in milk whey. Journal of Dairy Science, 93, 5552–5560. DOI: 10.3168/jds.2010-3116. http://dx.doi.org/10.3168/jds.2010-311610.3168/jds.2010-3116Suche in Google Scholar
[2] Baranyi, J., Pin, C., & Ross, T. (1999). Validating and comparing predictive models. International Journal of Food Microbiology, 48, 159–166. DOI: 10.1016/s0168-1605(99)00035-5. http://dx.doi.org/10.1016/S0168-1605(99)00035-510.1016/S0168-1605(99)00035-5Suche in Google Scholar
[3] Baranyi, J., & Roberts, T. A. (1994). A dynamic approach to predicting bacterial growth in food. International Journal of Food Microbiology, 23, 277–294. DOI: 10.1016/0168-1605(94)90157-0. http://dx.doi.org/10.1016/0168-1605(94)90157-010.1016/0168-1605(94)90157-0Suche in Google Scholar
[4] Brul, S., van Gerwen, S., & Zwietering, M. (2007). Modelling microorganisms in food. Cambridge, UK: Woodhead Publishing. http://dx.doi.org/10.1533/978184569294010.1533/9781845692940Suche in Google Scholar
[5] Collado, M. C., Meriluoto, J., & Salminen, S. (2007). In vitro analysis of probiotic strain combinations to inhibit pathogen adhesion to human intestinal mucus. Food Research International, 40, 629–636. DOI: 10.1016/j.foodres.2006.11.007. http://dx.doi.org/10.1016/j.foodres.2006.11.00710.1016/j.foodres.2006.11.007Suche in Google Scholar
[6] Curry, B., & Crow, V. (2004). Lactobacillus casei group. In H. Roginski, J. W. Fuquay, & P. F. Fox (Eds.), Encyclopedia of dairy science (pp. 1479–1484). San Diego, CA, USA: Academic Press. http://dx.doi.org/10.1016/B0-12-227235-8/00238-810.1016/B0-12-227235-8/00238-8Suche in Google Scholar
[7] Dicks, L. M. T., & Botes, M. (2010). Probiotic lactic acid bacteria in the gastro-intestinal tract: health benefits, safety and mode of action. Beneficial Microbes, 1, 11–29. DOI: 10.3920/bm2009.0012. http://dx.doi.org/10.3920/BM2009.001210.3920/BM2009.0012Suche in Google Scholar PubMed
[8] EFSA Panel on Dietetic Products, Nutrition and Allergies (2011). Scientific opinion on the substantiation of a health claim related to Lactobacillus rhamnosus GG and maintenance of defence against pathogenic gastrointestinal microorganisms pursuant to Article 13(5) of Regulation (EC) No 1924/2006. EFSA Journal, 9, 2167. DOI: 10.2903/j.efsa.2011.2167. 10.2903/j.efsa.2011.2167Suche in Google Scholar
[9] El-Nezami, H., Salminen, S. J., & Ahokas, J. (1996). Biological control of food carcinogens with use of Lactobacillus GG. Nutrition Today, 31, 43S. http://dx.doi.org/10.1097/00017285-199611001-0001310.1097/00017285-199611001-00013Suche in Google Scholar
[10] Gibson, A. M., & Roberts, T. A. (1989). Predicting microbial growth: development of a mathematical model to predict bacterial growth responses. Food Australia, 41, 1075–1079. Suche in Google Scholar
[11] Gorbach, S. L., & Goldin, B. R. (1989). U.S. Patent No. US 4,839,281. Washington, DC, USA: U.S. Patent and Trademark Office. Suche in Google Scholar
[12] Görner, F., & Valík, Ľ. (2004). Aplikovaná mikrobiológia požívatín (Applied Food Microbiology). Bratislava, Slovakia: Malé centrum. (in Slovak) Suche in Google Scholar
[13] Helland, M. H., Wicklund, T., & Narvhus, J. A. (2004). Growth and metabolism of selected strains of probiotic bacteria in milk- and water-based cereal puddings. International Dairy Journal, 14, 957–965. DOI: 10.1016/j.idairyj.2004.03.008. http://dx.doi.org/10.1016/j.idairyj.2004.03.00810.1016/j.idairyj.2004.03.008Suche in Google Scholar
[14] Hickey, M. (2005). Current legislation of probiotic products. In A. Tamime (Ed.), Probiotic dairy products (pp. 73–97). Oxford, UK: Blackwell Publishing. DOI: 10.1002/9780470995785.ch4. 10.1002/9780470995785.ch4Suche in Google Scholar
[15] Jyoti, B. D., Suresh, A. K., & Venkatesh, K. V. (2003). Diacetyl production and growth of Lactobacillus rhamnosus on multiple substrates. World Journal of Microbiology & Biotechnology, 19, 509–514. DOI: 10.1023/a:1025170630905. http://dx.doi.org/10.1023/A:102517063090510.1023/A:1025170630905Suche in Google Scholar
[16] Lam, E. K. Y., Tai, E. K. K., Koo, M.W. L., Wong, H. P. S., Wu, W. K. K., Yu, L., So, W. H. L., Woo, P. C. Y., & Cho, C. H. (2007). Enhancement of gastric mucosal integrity by Lactobacillus rhamnosus GG. Life Sciences, 80, 2128–2136. DOI: 10.1016/j.lfs.2007.03.018. http://dx.doi.org/10.1016/j.lfs.2007.03.01810.1016/j.lfs.2007.03.018Suche in Google Scholar
[17] Liew, S. L., Arrif, A. B., Raha, A. R., & Ho, Y. W. (2005). Optimization of medium composition for the production of a probiotic microrganism, Lactobacillus rhamnosus, using response surface methodology. International Journal of Food Microbiology, 102, 137–142. DOI: 10.1016/j.ijfoodmicro.2004.12.009. http://dx.doi.org/10.1016/j.ijfoodmicro.2004.12.00910.1016/j.ijfoodmicro.2004.12.009Suche in Google Scholar
[18] Mattila-Sandholm, T., Blum, S., Collins, J. K., Crittenden, R., de Vos, W., Dunne, C., Fondén, R., Grenov, G., Isolauri, E., Kiely, B., Marteau, P., Morelli, L., Ouwehand, A., Reniero, R., Saarela, M., Salminen, S., Saxelin, M., Schiffrin, E., Shanahan, F., Vaughan, E., & von Wright, A. (1999). Probiotics: towards demonstrating efficacy. Trends in Food Science & Technology, 10, 393–399. DOI: 10.1016/s0924-2244(00)00029-7. http://dx.doi.org/10.1016/S0924-2244(00)00029-710.1016/S0924-2244(00)00029-7Suche in Google Scholar
[19] McKellar, R. C., & Lu, X.W. (Eds.) (2004). Modeling microbial responses in food. Boca Raton, FL, USA: CRC Press. Suche in Google Scholar
[20] McMeekin, T. A., Olley, J. N., Ross, T., & Ratkowsky, D. A. (1993). Basic concepts and methods. In T. A. McMeekin, J. N. Olley, T. Ross, & D. A. Ratkowsky (Eds.), Predictive microbiology: Theory and application (pp. 11–86). New York, NY, USA: Wiley. Suche in Google Scholar
[21] Medveďová, A., Valík, Ľ., & Studeničová, A. (2009). The effect of temperature and water activity on the growth of Staphylococcus aureus. Czech Journal of Food Science, 27(Special issue 2), S2-28–S2-35. 10.17221/204/2009-CJFSSuche in Google Scholar
[22] Ratkowsky, D. A., Olley, J., McMeekin, T. A., & Ball, A. (1982). Relationship between temperature and growth rate of bacterial cultures. Journal of Bacteriology, 149, 1–5. 10.1128/jb.149.1.1-5.1982Suche in Google Scholar
[23] Rinkinen, M., Jalava, K., Westermarck, E., Salminen, S., & Ouwehand, A. C. (2003). Interaction between probiotic lactic acid bacteria and canine enteric pathogens: a risk factor for intestinal Enterococcus faecium colonization? Veterinary Microbiology, 92, 111–119. DOI: 10.1016/s0378-1135(02)00356-5. http://dx.doi.org/10.1016/S0378-1135(02)00356-510.1016/S0378-1135(02)00356-5Suche in Google Scholar
[24] Ross, T. (1996). Indices for performance evaluation of predictive models in food microbiology. Journal of Applied Bacteriology, 81, 501–508. DOI: 10.1111/j.1365-2672.1996.tb03539.x. 10.1111/j.1365-2672.1996.tb03539.xSuche in Google Scholar
[25] Ross, T., & McMeekin, T. A. (1994). Predictive microbiology. International Journal of Food Microbiology, 23, 241–264. DOI: 10.1016/0168-1605(94)90155-4. http://dx.doi.org/10.1016/0168-1605(94)90155-410.1016/0168-1605(94)90155-4Suche in Google Scholar
[26] Ross, T., & Dalgaard, P. (2004). Secondary models. In R. C. McKellar, & X. W. Lu (Eds.), Modeling microbial responses in food (pp. 63–150). Boca Raton, FL, USA: CRC Press. Suche in Google Scholar
[27] Rosso, L., Lobry, J. R., & Flandrois, J. P. (1993). An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model. Journal of Theoretical Biology, 162, 447–463. DOI: 10.1006/jtbi.1993.1099. http://dx.doi.org/10.1006/jtbi.1993.109910.1006/jtbi.1993.1099Suche in Google Scholar PubMed
[28] Rosso, L., Lobry, J. R., Bajard, S., & Flandrois, J. P. (1995). Convenient model to describe the combined effects of temperature and pH on microbial growth. Applied and Environmental Microbiology, 61, 610–616. 10.1128/aem.61.2.610-616.1995Suche in Google Scholar
[29] Roupas, P. (2008). Predictive modelling of dairy manufacturing processes. International Dairy Journal, 18, 741–753. DOI: 10.1016/j.idairyj.2008.03.009. http://dx.doi.org/10.1016/j.idairyj.2008.03.00910.1016/j.idairyj.2008.03.009Suche in Google Scholar
[30] Slovak Office of Standards, Metrology and Testing (2002). Slovak standard. Microbiology of food and animal feeding stuffs. Horizontal method for the enumeration of mesophilic lactic acid bacteria. Colony-count technique at 30 °C. STN ISO 15214. Bratislava, Slovakia. Suche in Google Scholar
[31] te Giffel, M. C., & Zwietering, M. H. (1999). Validation of predictive models describing the growth of Listeria monocytogenes. International Journal of Food Microbiology, 46, 135–149. DOI: 10.1016/s0168-1605(98)00189-5. http://dx.doi.org/10.1016/S0168-1605(98)00189-510.1016/S0168-1605(98)00189-5Suche in Google Scholar
[32] The MathWorks (2006a). Using MATLAB. Natick, MA, USA: The MathWorks, Inc. Suche in Google Scholar
[33] The MathWorks (2006b). Optimization toolbox for use with MATLAB: User’s guide. Natick,MA, USA: TheMathWorks, Inc. Suche in Google Scholar
[34] Tuomola, E. M., Ouwehand, A. C., & Salminen, S. J. (2000). Chemical, physical and enzymatic pre-treatments of probiotic lactobacilli alter their adhesion to human intestinal mucus glycoproteins. International Journal of Food Microbiology, 60, 75–81. DOI: 10.1016/s0168-1605(00)00319-6. http://dx.doi.org/10.1016/S0168-1605(00)00319-610.1016/S0168-1605(00)00319-6Suche in Google Scholar
[35] Työppönen, S., Petäjä, E., & Mattila-Sandholm, T. (2003). Bioprotectives and probiotics for dry sausages. International Journal of Food Microbiology, 83, 233–244. DOI: 10.1016/s0168-1605(02)00379-3 http://dx.doi.org/10.1016/S0168-1605(02)00379-310.1016/S0168-1605(02)00379-3Suche in Google Scholar
[36] Valík, Ľ., Medveďováková, D. (2008). Characterization of the growth of Lactobacillus rhamnosus GG in milk at suboptimal temperatures. Journal of Food and Nutrition Research, 47, 60–67. Suche in Google Scholar
[37] Zurera-Cosano, G., García-Gimeno, R. M., Rodríguez-Pérez, R., & Hervás-Martínez, C. (2006). Performance of response surface model for prediction of Leuconostoc mesenteroides growth parameters under different experimental conditions. Food Control, 17, 429–438. DOI: 10.1016/j.foodcont.2005.02.003. http://dx.doi.org/10.1016/j.foodcont.2005.02.00310.1016/j.foodcont.2005.02.003Suche in Google Scholar
[38] Zwietering, M. H., De Koos, J. T., Hasenack, B. E., de Witt, J. C., & van’t Riet, K. (1991). Modeling of bacterial growth as a function of temperature. Applied and Environmental Microbiology, 57, 1094–1101. 10.1128/aem.57.4.1094-1101.1991Suche in Google Scholar PubMed PubMed Central
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Flexibility of active-site gorge aromatic residues and non-gorge aromatic residues in acetylcholinesterase
- Influence of trace elements supplementation on the production of recombinant frutalin by Pichia pastoris KM71H in fed-batch process
- Mesoporous nanocrystalline MgAl2O4: A new heterogeneous catalyst for the synthesis of 2,4,6-triarylpyridines under solvent-free conditions
- Effective immobilisation of lipase to enhance esterification potential and reusability
- Hydrogen production by steam reforming of glycerol over Ni/Ce/Cu hydroxyapatite-supported catalysts
- Solvent-free acetylation and tetrahydropyranylation of alcohols catalyzed by recyclable sulfonated ordered nanostructured carbon
- Pertraction of methylene blue using a mixture of D2EHPA/M2EHPA and sesame oil as a liquid membrane
- Selective separation of essential phenolic compounds from olive oil mill wastewater using a bulk liquid membrane
- Evaluation of temperature effect on growth rate of Lactobacillus rhamnosus GG in milk using secondary models
- Fastener effect on magnetic properties of chain compounds of dinuclear ruthenium carboxylates
- Synthesis of novel fluorene-functionalised nanoporous silica and its luminescence behaviour in acidic media
- d-Glucosamine as an efficient and green additive for palladium-catalyzed Heck reaction
- Anti-oxidative properties of bi-1,2,4-triazine bisulphides
Artikel in diesem Heft
- Flexibility of active-site gorge aromatic residues and non-gorge aromatic residues in acetylcholinesterase
- Influence of trace elements supplementation on the production of recombinant frutalin by Pichia pastoris KM71H in fed-batch process
- Mesoporous nanocrystalline MgAl2O4: A new heterogeneous catalyst for the synthesis of 2,4,6-triarylpyridines under solvent-free conditions
- Effective immobilisation of lipase to enhance esterification potential and reusability
- Hydrogen production by steam reforming of glycerol over Ni/Ce/Cu hydroxyapatite-supported catalysts
- Solvent-free acetylation and tetrahydropyranylation of alcohols catalyzed by recyclable sulfonated ordered nanostructured carbon
- Pertraction of methylene blue using a mixture of D2EHPA/M2EHPA and sesame oil as a liquid membrane
- Selective separation of essential phenolic compounds from olive oil mill wastewater using a bulk liquid membrane
- Evaluation of temperature effect on growth rate of Lactobacillus rhamnosus GG in milk using secondary models
- Fastener effect on magnetic properties of chain compounds of dinuclear ruthenium carboxylates
- Synthesis of novel fluorene-functionalised nanoporous silica and its luminescence behaviour in acidic media
- d-Glucosamine as an efficient and green additive for palladium-catalyzed Heck reaction
- Anti-oxidative properties of bi-1,2,4-triazine bisulphides