Startseite Lebenswissenschaften N,N′-methylenedipyridinium Pt(II) and Pt(IV) hybrid salts: synthesis, crystal and molecular structures of [(C5H5N)2CH2] · [PtCl4] and [(C5H5N)2CH2] · [PtCl6]
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

N,N′-methylenedipyridinium Pt(II) and Pt(IV) hybrid salts: synthesis, crystal and molecular structures of [(C5H5N)2CH2] · [PtCl4] and [(C5H5N)2CH2] · [PtCl6]

  • Mahmoud Al-Ktaifani EMAIL logo und Mwaffak Rukiah
Veröffentlicht/Copyright: 27. Juli 2012
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The highly insoluble organic-inorganic hybrid ionic compounds N,N′-methylenedipyridinium tetrachloroplatinate(II) [(C5H5N)2CH2] · [PtCl4] and N,N′-methylenedipyridinium hexachloroplatinate(IV) [(C5H5N)2CH2] · [PtCl6] were obtained by the treatment of N,N′-methylenedipyridinium dichloride monohydrate [(C5H5N)2CH2]Cl2 · H2O with K2[PtCl4] or (NH4)2[PtCl6], respectively, in an aqueous solution. Both complexes were isolated, purified, characterised by elemental analysis, and their molecular structures were confirmed by powder X-ray diffraction. The crystal structure of both compounds consists of separated discrete dications [(C5H5N)2CH2]2+ and anions [PtCln]2− (n = 4 or 6). As anticipated, the dications formed a butterfly shape consisting of two pyridine rings bound to the methylene group via their N atoms, while the Pt centre had a square planar geometry in [(C5H5N)2CH2] · [PtCl4] and an octahedral coordination in [(C5H5N)2CH2] · [PtCl6]. Interestingly, both crystal structures are stabilised by intermolecular C-H…Cl non-standard hydrogen bonds, π-π ring interactions between two pyridine rings of adjacent dications, and also by Cl-π interactions.

[1] Adams, C. J., Angeloni, A., Orpen, A. G., Podesta, T. J., & Shore, B. (2006). Crystal synthesis of organic-inorganic hybrid salts based on tetrachloroplatinate and — palladate salts of organic cations: Formation of linear, two-, and three-dimensional NH… Cl hydrogen bond Networks. Crystal Growth & Design, 6, 411–422. DOI: 10.1021/cg050362o. http://dx.doi.org/10.1021/cg050362o10.1021/cg050362oSuche in Google Scholar

[2] Al-Ktaifani, M.M., & Rukiah, M. K. (2011). Synthesis and crystal and molecular structures of N,N′-methylenedipyridinium tetrachlorozincate(II) and N,N′-methylenedipyridinium tetrachlorocadmate(II). Chemical Papers, 65, 469–476. DOI: 10.2478/s11696-011-0031-4. http://dx.doi.org/10.2478/s11696-011-0031-410.2478/s11696-011-0031-4Suche in Google Scholar

[3] Almarzoqi, B., George, A. V., & Isaacs, N. S. (1986). The quarternisation of tertiary amines with dihalomethane. Tetrahedron, 42, 601–607. DOI: 10.1016/s0040-4020(01)87459-7. http://dx.doi.org/10.1016/S0040-4020(01)87459-710.1016/S0040-4020(01)87459-7Suche in Google Scholar

[4] Altomare, A., Camalli, M., Cuocci, C., Giacovazzo, C., Moliterni, A., & Rizzi, R. (2009). EXPO2009: structure solution by powder data in direct and reciprocal space. Journal of Applied Crystallography, 42, 1197–1202. DOI: 10.1107/s0021889809042915. http://dx.doi.org/10.1107/S002188980904291510.1107/S0021889809042915Suche in Google Scholar

[5] Amani, V., Rahimi, R., & Khavasi, H. R. (2008). Bis(2,6-dimethylpyridinium) hexachloridoplatinate(IV). Acta Crystallographica Section E, 64, m1143–m1144. DOI: 10.1107/s1600536808025257. http://dx.doi.org/10.1107/S160053680802525710.1107/S1600536808025257Suche in Google Scholar PubMed PubMed Central

[6] Baer, S. H., & Prescott, A. B. (1896). Dipyridine methylene iodide and the non-formation of the corresponding monopyridine products. Journal of the American Chemical Society, 18, 988–989. DOI: 10.1021/ja02097a009. http://dx.doi.org/10.1021/ja02097a00910.1021/ja02097a009Suche in Google Scholar

[7] Bondi, A. (1964). van der Waals volumes and radii. The Journal of Physical Chemistry, 68, 441–451. DOI: 10.1021/j100785a001. http://dx.doi.org/10.1021/j100785a00110.1021/j100785a001Suche in Google Scholar

[8] Bonhomme, F., & Kanatzidis, M. G. (1998). Structurally characterized mesostructured hybrid surfactant-inorganic lamellar phases containing the adamantane [Ge4S10]4− anion: Synthesis and properties. Chemistry of Materials, 10, 1153–1159. DOI: 10.1021/cm970755d. http://dx.doi.org/10.1021/cm970755d10.1021/cm970755dSuche in Google Scholar

[9] Boultif, A., & Louër, D. (2004). Powder pattern indexing with the dichotomy method. Journal of Applied Crystallography, 37, 724–731. DOI: 10.1107/s0021889804014876. http://dx.doi.org/10.1107/S002188980401487610.1107/S0021889804014876Suche in Google Scholar

[10] Bruhn, C., & Preetz, W. (1995a). Dipyridiniomethane transdichlorotetrafluoroosmate(IV) hydrate, trans-[(C5H5N)2CH2][OsF4Cl2].H2O. Acta Crystallographica Section C, 51, 865–867. DOI: 10.1107/s0108270194011960. http://dx.doi.org/10.1107/S010827019401196010.1107/S0108270194011960Suche in Google Scholar

[11] Bruhn, C., & Preetz, W. (1995b). fac- and mer-Dipyridiniomethane trichlorotrifluoroosmate(IV), fac- and mer-[(C5H5N)2 CH2][OsCl3F3]. Acta Crystallographica Section C, 51, 1112–1116. DOI: 10.1107/s0108270194015015. http://dx.doi.org/10.1107/S010827019401501510.1107/S0108270194015015Suche in Google Scholar

[12] Bruhn, C., & Preetz, W. (1996). Dipyridiniomethane cis- and trans-difluorotetrachloroosmate(IV), cis- and trans-[(C5H5N)2CH2][OsCl4F2]. Acta Crystallographica Section C, 52, 321–325. DOI: 10.1107/s0108270195010717. http://dx.doi.org/10.1107/S010827019501071710.1107/S0108270195010717Suche in Google Scholar

[13] Favre-Nicolin, V., & Cerný, R. (2002). FOX, ‘free objects for crystallography’: a modular approach to ab initio structure determination from powder diffraction. Journal of Applied Crystallography, 35, 734–743. DOI: 10.1107/s0021889802015236. http://dx.doi.org/10.1107/S002188980201523610.1107/S0021889802015236Suche in Google Scholar

[14] Finger, L. W., Cox, D. E., & Jephcoat, A. P. (1994). A correction for powder diffraction peak asymmetry due to axial divergence. Journal of Applied Crystallography, 27, 892–900. DOI: 10.1107/s0021889894004218. http://dx.doi.org/10.1107/S002188989400421810.1107/S0021889894004218Suche in Google Scholar

[15] Höhling, M., & Preetz, W. (1998). Dipyridiniomethane cis-dibromotetrafluoroosmate(IV), cis-[(C5H5N)2CH2][OsBr2F4]. Acta Crystallographica Section C, 54, 481–483. DOI: 10.1107/s0108270197017174. 10.1107/S0108270197017174Suche in Google Scholar

[16] Hunter, C. A., & Sanders, J. K. M. (1990). The nature of π-π interactions. Journal of the American Chemical Society, 112, 5525–5534. DOI: 10.1021/ja00170a016. http://dx.doi.org/10.1021/ja00170a01610.1021/ja00170a016Suche in Google Scholar

[17] Imai, Y. N., Inoue, Y., Nakanishi, I., & Kitaura, K. (2008). Cl-π interactions in protein-ligand complexes. Protein Science, 17, 1129–1137. DOI: 10.1110/ps.033910.107. http://dx.doi.org/10.1110/ps.033910.10710.1110/ps.033910.107Suche in Google Scholar PubMed PubMed Central

[18] Kagan, C. R., Mitzi, D. B., & Dimitrakopoulos, C. D. (1999). Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science, 286, 945–947. DOI: 10.1126/science.286.5441.945. http://dx.doi.org/10.1126/science.286.5441.94510.1126/science.286.5441.945Suche in Google Scholar PubMed

[19] Kimizuka, N., & Kunitake, T. (1996). Organic two-dimensional templates for the fabrication of inorganic nanostructures: Organic/inorganic superlattices. Advanced Materials, 8, 89–91. DOI: 10.1002/adma.19960080119. http://dx.doi.org/10.1002/adma.1996008011910.1002/adma.19960080119Suche in Google Scholar

[20] Larson, A. C., & Von Dreele, R. B. (2004). General structure analysis system. (LAUR 86-748). Los Alamos, NM, USA: Los Alamos National Laboratory. Suche in Google Scholar

[21] Li, H. H., Chen, Z. R., Cheng, L. C., Liu, J. B., Chen, X. B., & Li, J. Q. (2008). A new hybrid optical semiconductor based on polymeric iodoplumbate co-templated by both organic cation and polyiodide anion. Crystal Growth & Design, 8, 4355–4358. DOI: 10.1021/cg800959s. http://dx.doi.org/10.1021/cg800959s10.1021/cg800959sSuche in Google Scholar

[22] Mitzi, D. B., Prikas, M. T., & Chondroudis, K. (1999). Thin film deposition of organic-inorganic hybrid materials using a single source thermal ablation technique. Chemistry of Materials, 11, 542–544. DOI: 10.1021/cm9811139. http://dx.doi.org/10.1021/cm981113910.1021/cm9811139Suche in Google Scholar

[23] Niu, Y.Y., Wu, B. L., Guo, X. L., Song, Y. L., Liu, X.C., Zhang, H. Y., Hou, H. W., Niu, C. Y., & Ng, S. W. (2008). A systematic design and facile construct of metal pseudohalide frameworks directed by 1,ω-bis(pyridinium)alkane cations. Crystal Growth & Design, 8, 2393–2401. DOI: 10.1021/cg701241v. http://dx.doi.org/10.1021/cg701241v10.1021/cg701241vSuche in Google Scholar

[24] Thompson, P., Cox, D. E., & Hastings, J. B. (1987). Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3. Journal of Applied Crystallography, 20, 79–83. DOI: 10.1107/s0021889887087090. http://dx.doi.org/10.1107/S002188988708709010.1107/S0021889887087090Suche in Google Scholar

[25] Toby, B. H. (2001). EXPGUI, a graphical user interface for GSAS. Journal of Applied Crystallography, 34, 210–213. DOI: 10.1107/s0021889801002242. http://dx.doi.org/10.1107/S002188980100224210.1107/S0021889801002242Suche in Google Scholar

[26] Von Dreele, R. B. (1997). Quantitative texture analysis by Rietveld refinement. Journal of Applied Crystallography, 30, 517–525. DOI: 10.1107/s0021889897005918. http://dx.doi.org/10.1107/S002188989700591810.1107/S0021889897005918Suche in Google Scholar

[27] Wachhold, M., & Kanatzidis, M. G. (2000). Surfactanttemplated inorganic lamellar and non-lamellar hybrid phases containing adamantane [Ge4Se10]4− anions. Chemistry of Materials, 12, 2914–2923. DOI: 10.1021/cm000102o. http://dx.doi.org/10.1021/cm000102o10.1021/cm000102oSuche in Google Scholar

Published Online: 2012-7-27
Published in Print: 2012-11-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Immobilization in biotechnology and biorecognition: from macro- to nanoscale systems
  2. Bond-graph description and simulation of membrane processes: Permeation in a compartmental membrane system
  3. Design simulations for a biogas purification process using aqueous amine solutions
  4. Experimental and numerical investigation of pressure drop coefficient and static pressure difference in a tangential inlet cyclone separator
  5. Trace elements in Variegated Bolete (Suillus variegatus) fungi
  6. N,N′-methylenedipyridinium Pt(II) and Pt(IV) hybrid salts: synthesis, crystal and molecular structures of [(C5H5N)2CH2] · [PtCl4] and [(C5H5N)2CH2] · [PtCl6]
  7. Formation of membranes based on polyacrylonitrile and butadiene-acrylonitrile elastomer in the presence of copper ions
  8. One-step synthesis of solid sulfonic acid catalyst and its application in the acetalization of glycerol: crystal structure of cis-5-hydroxy-2-phenyl-1,3-dioxane trimer
  9. Mechanistic insights into the reaction of CF3CCl3 with SO3: Theory and experiment
  10. Near-infrared imaging for quantitative analysis of active component in counterfeit dimethomorph using partial least squares regression
  11. Corrosion of titanium diboride in molten FLiNaK(eut)
  12. Domino synthesis of novel series of 4-substituted 5-thioxo-1,2,4-triazolidin-3-one derivatives
  13. Erratum to: “Nguyen Hoang Loc, Nguyen Thanh Giang: Effects of elicitors on the enhancement of asiaticoside biosynthesis in cell cultures of centella (Centella asiatica L. Urban)”, Chemical Papers 66 (7) 642–648 (2012)
Heruntergeladen am 4.2.2026 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0221-8/pdf
Button zum nach oben scrollen