Startseite Formation of membranes based on polyacrylonitrile and butadiene-acrylonitrile elastomer in the presence of copper ions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Formation of membranes based on polyacrylonitrile and butadiene-acrylonitrile elastomer in the presence of copper ions

  • Stoiko Petrov Petrov EMAIL logo und Milena Pencheva Miteva
Veröffentlicht/Copyright: 27. Juli 2012
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The presented study provides a possibility to create ultrafiltration (UF), polyacrylonitrile(PAN)/butadiene-acrylonitrile elastomer (BNR)/N,N-dimethylformamide (DMF) membranes. Influence of different concentrations of the elastomer on the formation of a more porous structure was studied and compared with that observed using membranes made of polyacrylonitrile. Specific influence of copper ions in a solution of polymers on the formation of an asymmetric selective layer was also monitored. The study was conducted to prepare membranes with high efficiency in emulsion and colloidal systems separation.

[1] Arthanareeswaran, G., Mohan, D., & Raajenthiren, M. (2010). Preparation, characterization and performance studies of ultrafiltration membranes with polymeric additive. Journal of Membrane Science, 350, 130–138. DOI: 10.1016/j.memsci.2009.12.020. http://dx.doi.org/10.1016/j.memsci.2009.12.02010.1016/j.memsci.2009.12.020Suche in Google Scholar

[2] Asaletha, R., Bindu, P., Aravind, I., Meera, A. P., Valsaraj, S. V., Yang, W. M., & Thomas, S. (2008). Stress-relaxation behavior of natural rubber/polystyrene and natural rubber/polystyrene/natural rubber-graft-polystyrene blends. Journal of Applied Polymer Science, 108, 904–913. DOI: 10.1002/app.27395. http://dx.doi.org/10.1002/app.2739510.1002/app.27395Suche in Google Scholar

[3] Buch, P. R., Mohan, D. J., & Reddy, A. V. R. (2008). Preparation, characterization and chlorine stability of aromatic-cycloaliphatic polyamide thin film composite membranes. Journal of Membrane Science, 309, 36–44. DOI: 10.1016/j.memsci.2007.10.004. http://dx.doi.org/10.1016/j.memsci.2007.10.00410.1016/j.memsci.2007.10.004Suche in Google Scholar

[4] Idris, A., & Yet, L. K. (2006). The effect of different molecular weight PEG additives on cellulose acetate asymmetric dialysis membrane performance. Journal of Membrane Science, 280, 920–927. DOI: 10.1016/j.memsci.2006.03.010. http://dx.doi.org/10.1016/j.memsci.2006.03.01010.1016/j.memsci.2006.03.010Suche in Google Scholar

[5] Kim, S. R., Lee, K. H., & Jhon, M. S. (1996). The effect of ZnCl2 on the formation of polysulfone membrane. Journal of Membrane Science, 119, 59–64. DOI: 10.1016/0376-7388(96)00113-5. http://dx.doi.org/10.1016/0376-7388(96)00113-510.1016/0376-7388(96)00113-5Suche in Google Scholar

[6] Kim, J. H., & Lee, K. H. (1998). Effect of PEG additive on membrane formation by phase inversion. Journal of Membrane Science, 138, 153–163. DOI: 10.1016/s0376-7388(97)00224-x. http://dx.doi.org/10.1016/S0376-7388(97)00224-X10.1016/S0376-7388(97)00224-XSuche in Google Scholar

[7] Kim, I. C., Yun, H. G., & Lee, K. H. (2002). Preparation of asymmetric polyacrylonitrile membrane with small pore size by phase inversion and post-treatment process. Journal of Membrane Science, 199, 75–84. DOI: 10.1016/s0376-7388(01)00680-9. http://dx.doi.org/10.1016/S0376-7388(01)00680-910.1016/S0376-7388(01)00680-9Suche in Google Scholar

[8] Kobayashi, T., Nagai, T., Ono, M., Wang, H. Y., & Fujii, N. (1997). Phase inversion process of amphiphilic charged polyacrylonitriles for molecular size exclusion membrane. European Polymer Journal, 33, 1191–1201. DOI: 10.1016/s0014-3057(97)00010-4. http://dx.doi.org/10.1016/S0014-3057(97)00010-410.1016/S0014-3057(97)00010-4Suche in Google Scholar

[9] Lee, H. J., Won, J., Lee, H., & Kang, Y. S. (2002). Solution properties of poly(amic acid)-NMP containing LiCl and their effects on membrane morphologies. Journal of Membrane Science, 196, 267–277. DOI: 10.1016/s0376-7388(01)00610-x. http://dx.doi.org/10.1016/S0376-7388(01)00610-X10.1016/S0376-7388(01)00610-XSuche in Google Scholar

[10] Li, C. L., Huang, S. H., Liaw, D. J., Lee, K. R., & Lai, J. Y. (2008). Interfacial polymerized thin-film composite membranes for pervaporation separation of aqueous isopropanol solution. Separation and Purification Technology, 62, 694–701. DOI: 10.1016/j.seppur.2008.03.031. http://dx.doi.org/10.1016/j.seppur.2008.03.03110.1016/j.seppur.2008.03.031Suche in Google Scholar

[11] Li, L. C., Wang, B. G., Tan, H. M., Chen, T. L., & Xu, J. P. (2006). A novel nanofiltration membrane prepared with PAMAM and TMC by in situ interfacial polymerization on PEK-C ultrafiltration membrane. Journal of Membrane Science, 269, 84–93. DOI: 10.1016/j.memsci.2005.06.021. http://dx.doi.org/10.1016/j.memsci.2005.06.02110.1016/j.memsci.2005.06.021Suche in Google Scholar

[12] Lim, J. W., Lee, J. M., Yun, S. M., Park, B. J., & Lee, Y. S. (2009). Hydrophilic modification of polyacrylonitrile membranes by oxyfluorination. Journal of Industrial and Engineering Chemistry, 15, 876–882. DOI: 10.1016/j.jiec.2009.09.016. http://dx.doi.org/10.1016/j.jiec.2009.09.01610.1016/j.jiec.2009.09.016Suche in Google Scholar

[13] Mueller, J., & Davis, R. H. (1996). Protein fouling of surfacemodified polymeric microfiltration membranes. Journal of Membrane Science, 116, 47–60. DOI: 10.1016/0376-7388(96)00017-8. http://dx.doi.org/10.1016/0376-7388(96)00017-810.1016/0376-7388(96)00017-8Suche in Google Scholar

[14] Petrov, S., & Nenov, V. (2004). Removal and recovery of copper from wastewater by a complexation-ultrafiltrationprocess. Desalination, 162, 201–209. DOI: 10.1016/s0011-9164(04)00043-8. http://dx.doi.org/10.1016/S0011-9164(04)00043-810.1016/S0011-9164(04)00043-8Suche in Google Scholar

[15] Phadke, M. A., Kulkarni, S. S., Karode, S. K., & Musale, D. A. (2005). Poly(acrylonitrile) ultrafiltration membranes. II. Membrane morphology and permeation characteristics. Journal of Polymer Science B: Polymer Physics, 43, 2074–2085. DOI: 10.1002/polb.20494. 10.1002/polb.20494Suche in Google Scholar

[16] Scharnagl, N., & Buschatz, H. (2001). Polyacrylonitrile (PAN) membranes for ultra- and microfiltration. Desalination, 139, 191–198. DOI: 10.1016/s0011-9164(01)00310-1. http://dx.doi.org/10.1016/S0011-9164(01)00310-110.1016/S0011-9164(01)00310-1Suche in Google Scholar

[17] Shieh, J. J., Chung, T. S., Wong, R., Srinivasan, M. P., & Paul, D. R. (2001). Gas separation performance of poly(4-vinylpyridine)/polyetherimide composite hollow fibers. Journal of Membrane Science, 182, 111–123. DOI: 10.1016/s0376-7388(00)00560-3. http://dx.doi.org/10.1016/S0376-7388(00)00560-310.1016/S0376-7388(00)00560-3Suche in Google Scholar

[18] Sivakumar, M., Mohan, D. R., & Rangarajan, R. (2006). Studies on cellulose acetate-polysulfone ultrafiltration membranes. II. Effect of additive concentration. Journal of Membrane Science, 268, 208–219. DOI: 10.1016/j.memsci.2005.06.017. http://dx.doi.org/10.1016/j.memsci.2005.06.01710.1016/j.memsci.2005.06.017Suche in Google Scholar

[19] Wan, Y. H., Ghosh, R., Hale, G., & Cui, Z. F. (2005). Fractionation of bovine serum albumin and monoclonal antibody alemtuzumab using carrier phase ultrafiltration. Biotechnology and Bioengineering, 90, 303–315. DOI: 10.1002/bit.20415. http://dx.doi.org/10.1002/bit.2041510.1002/bit.20415Suche in Google Scholar PubMed

[20] Wang, M., Wu, L. G., Mo, J. X., & Gao, C. J. (2006). The preparation and characterization of novel charged polyacrylonitrile/PES-C blend membranes used for ultrafiltration. Journal of Membrane Science, 274, 200–208. DOI: 10.1016/j.memsci.2005.05.035. http://dx.doi.org/10.1016/j.memsci.2005.05.03510.1016/j.memsci.2005.05.035Suche in Google Scholar

[21] Yoon, K. H., Hsiao, B. S., & Chu, B. (2009). High flux nanofiltration membranes based on interfacially polymerized polyamide barrier layer on polyacrylonitrile nanofibrous scaffolds. Journal of Membrane Science, 326, 484–492. DOI: 10.1016/j.memsci.2008.10.023. http://dx.doi.org/10.1016/j.memsci.2008.10.02310.1016/j.memsci.2008.10.023Suche in Google Scholar

Published Online: 2012-7-27
Published in Print: 2012-11-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Immobilization in biotechnology and biorecognition: from macro- to nanoscale systems
  2. Bond-graph description and simulation of membrane processes: Permeation in a compartmental membrane system
  3. Design simulations for a biogas purification process using aqueous amine solutions
  4. Experimental and numerical investigation of pressure drop coefficient and static pressure difference in a tangential inlet cyclone separator
  5. Trace elements in Variegated Bolete (Suillus variegatus) fungi
  6. N,N′-methylenedipyridinium Pt(II) and Pt(IV) hybrid salts: synthesis, crystal and molecular structures of [(C5H5N)2CH2] · [PtCl4] and [(C5H5N)2CH2] · [PtCl6]
  7. Formation of membranes based on polyacrylonitrile and butadiene-acrylonitrile elastomer in the presence of copper ions
  8. One-step synthesis of solid sulfonic acid catalyst and its application in the acetalization of glycerol: crystal structure of cis-5-hydroxy-2-phenyl-1,3-dioxane trimer
  9. Mechanistic insights into the reaction of CF3CCl3 with SO3: Theory and experiment
  10. Near-infrared imaging for quantitative analysis of active component in counterfeit dimethomorph using partial least squares regression
  11. Corrosion of titanium diboride in molten FLiNaK(eut)
  12. Domino synthesis of novel series of 4-substituted 5-thioxo-1,2,4-triazolidin-3-one derivatives
  13. Erratum to: “Nguyen Hoang Loc, Nguyen Thanh Giang: Effects of elicitors on the enhancement of asiaticoside biosynthesis in cell cultures of centella (Centella asiatica L. Urban)”, Chemical Papers 66 (7) 642–648 (2012)
Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0220-9/html
Button zum nach oben scrollen