Abstract
Pure and enriched titanium dibromide (TiB2) samples (prepared by hot isostatic pressing) with different mole ratios of Ni and Ta were investigated in contact with molten eutectic salt (FLiNaK(eut); LiF/NaF/KF 42.5 mole %: 11.5 mole %: 42.0 mole %) at 600°C. Corrosion resistance of the materials was studied, the mass losses and depths of corrosion were calculated, and sample surfaces were investigated by scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX). Nickel addition decreased the corrosion resistance of TiB2. Simultaneous additions of both elements, Ni and Ta, as well as the addition of Ta only showed reducing effect on grain formation and they increased the corrosion resistance which is highest in the last case.
[1] Ağaoğulları, D., Gökçe, H., Duman, İ., & Öveçoğlu, M. L. (2011). Influences of metallic Co and mechanical alloying on the microstructural and mechanical properties of TiB2 ceramics prepared via pressureless sintering. Journal of the European Ceramic Society, 32, 1949–1956. DOI: 1016/j.jeurceramsoc.2011.10.033. Search in Google Scholar
[2] Bača, Ľ., Lenčćš, Z., Jogl, C., Neubauer, E., Vitkovič, M., Merstallinger, A., & Šajgalík, P. (2011). Microstructure evolution and tribological properties of TiB2/Ni-Ta cermets. Journal of the European Ceramic Society, 32, 1941–1948. DOI: 1016/j.jeurceramsoc.2011.10.039. Search in Google Scholar
[3] Becker, A. J., & Blanks, J. H. (1984). TiB2-coated cathodes for aluminum smelting cells. Thin Solid Films, 119, 241–246. DOI: 10.1016/0040-6090(84)90009-9. http://dx.doi.org/10.1016/0040-6090(84)90009-910.1016/0040-6090(84)90009-9Search in Google Scholar
[4] Cirakoglu, M., Watt, G. L., & Bhaduri, S. B. (2000). Controlled combustion synthesis in the Ti-B system with ZrO2 addition. Materials Science and Engineering: A, 282, 223–231. DOI: 10.1016/s0921-5093(99)00721-2. http://dx.doi.org/10.1016/S0921-5093(99)00721-210.1016/S0921-5093(99)00721-2Search in Google Scholar
[5] Ett, G., & Pessine, E. J. (1999). Pulse current plating of TiB2 in molten fluoride. Electrochimica Acta, 44, 2859–2870. DOI: 10.1016/s0013-4686(98)00402-2. http://dx.doi.org/10.1016/S0013-4686(98)00402-210.1016/S0013-4686(98)00402-2Search in Google Scholar
[6] Fang, J. J., Li, Z. X., & Shi, Y. W. (2008). Microstructure and properties of TiB2-containing coatings prepared by arc spraying. Applied Surface Science, 254, 3849–3858. DOI: 1016/j.apsusc.2007.12.034. http://dx.doi.org/10.1016/j.apsusc.2007.12.03410.1016/j.apsusc.2007.12.034Search in Google Scholar
[7] Hoke, D. A., & Meyers, M. A. (1996). An equation describing the consolidation of combustion synthesized titanium diboride. Materials Science and Engineering: B, 39, 107–110. DOI: 10.1016/0921-5107(95)01534-5. http://dx.doi.org/10.1016/0921-5107(95)01534-510.1016/0921-5107(95)01534-5Search in Google Scholar
[8] Jensen, M. S., Pezzotta, M., Zhang, Z. L., Einarsrud, M. A., & Grande, T. (2008). Degradation of TiB2 ceramics in liquid aluminum. Journal of the European Ceramic Society, 28, 3155–3164. DOI: 1016/j.jeurceramsoc.2008.05.011. http://dx.doi.org/10.1016/j.jeurceramsoc.2008.05.01110.1016/j.jeurceramsoc.2008.05.011Search in Google Scholar
[9] Kaptay, G., & Kuznetsov, S. A. (1999). Electrochemical synthesis of refractory borides from molten salts. Plasmas & Ions, 2, 45–56. DOI: 10.1016/s1288-3255(00)87686-8. http://dx.doi.org/10.1016/S1288-3255(00)87686-810.1016/S1288-3255(00)87686-8Search in Google Scholar
[10] Kartal, G., Timur, S., Urgen, M., & Erdemir, A. (2010). Electrochemical boriding of titanium for improved mechanical properties. Surface and Coatings Technology, 204, 3935–3939. DOI: 1016/j.surfcoat.2010.05.021. http://dx.doi.org/10.1016/j.surfcoat.2010.05.02110.1016/j.surfcoat.2010.05.021Search in Google Scholar
[11] Li, J., & Li, B. (2007). Preparation of the TiB2 coatings by electroplating in molten salts. Materials Letters, 61, 1274–1278. DOI: 1016/j.matlet.2006.07.007. http://dx.doi.org/10.1016/j.matlet.2006.07.00710.1016/j.matlet.2006.07.007Search in Google Scholar
[12] Makyta, M., Matiašovský, K., & Taranenko, V. I. (1989). Mechanism of the cathode process in the electrochemical synthesis of TiB2 in molten salts—I. The synthesis in an allfluoride electrolyte. Electrochimica Acta, 34, 861–866. DOI: 10.1016/0013-4686(89)87120-8. 10.1016/0013-4686(89)87120-8Search in Google Scholar
[13] Murthy, T. S. R. C., Sonber, J. K., Subramanian, C., Fotedar, R. K., Gonal, M. R., & Suri, A. K. (2009). Effect of CrB2 addition on densification, properties and oxidation resistance of TiB2. International Journal of Refractory Metals and Hard Materials, 27, 976–984. DOI: 1016/j.ijrmhm.2009.06.004. http://dx.doi.org/10.1016/j.ijrmhm.2009.06.00410.1016/j.ijrmhm.2009.06.004Search in Google Scholar
[14] Peters, J. S., Cook, B. A., Harringa, J. L., & Russell, A. M. (2009). Erosion resistance of TiB2-ZrB2 composites. Wear, 267, 136–143. DOI: 1016/j.wear.2009.01.037. http://dx.doi.org/10.1016/j.wear.2009.01.03710.1016/j.wear.2009.01.037Search in Google Scholar
[15] Rybakova, N., Souto, M., Martinz, H. P., Andriyko, Y., Artner, W., Godinho, J., & Nauer, G. E. (2009). Stability of electroplated titanium diboride coatings in high-temperature corrosive media. Corrosion Science, 51, 1315–1321. DOI: 1016/j.corsci.2009.03.020. http://dx.doi.org/10.1016/j.corsci.2009.03.02010.1016/j.corsci.2009.03.020Search in Google Scholar
[16] Shibuya, M., & Ohyanagi, M. (2007). Effect of nickel boride additive on simultaneous densification and phase decomposition of TiB2-WB2 solid solutions by pressureless sintering using induction heating. Journal of the European Ceramic Society, 27, 301–306. DOI: 1016/j.jeurceramsoc.2006.05.081. http://dx.doi.org/10.1016/j.jeurceramsoc.2006.05.08110.1016/j.jeurceramsoc.2006.05.081Search in Google Scholar
[17] Sood, D. K., Mukherjee, S., Katselis, G., Brown, I. G., Prince, K. E., Short, K. T., & Evans, P. J. (1998). Modification of high-temperature oxidation of titanium diboride films by implantation with tantalum and titanium ions. Surface and Coatings Technology, 103–104, 304–311. DOI: 10.1016/s0257-8972(98)00428-9. http://dx.doi.org/10.1016/S0257-8972(98)00428-910.1016/S0257-8972(98)00428-9Search in Google Scholar
[18] Taranenko, V. I., Zarutskii, I. V., Shapoval, V. I., Makyta, M., & Matiašovsk K. (1992). Mechanism of the cathode process in the electrochemical synthesis of TiB2 in molten salts—II. Chloride-fluoride electrolytes. Electrochimica Acta, 37, 263–268. DOI: 10.1016/0013-4686(92)85011-9. http://dx.doi.org/10.1016/0013-4686(92)85011-910.1016/0013-4686(92)85011-9Search in Google Scholar
[19] Van Meter, M. L., Kampe, S. L., & Christodoulou, L. (1996). Mechanical properties of near-γ titanium aluminides reinforced with high volume percentages of TiB2. Scripta Materialia, 34, 1251–1256. DOI: 10.1016/1359-6462(95)00671-0. http://dx.doi.org/10.1016/1359-6462(95)00671-010.1016/1359-6462(95)00671-0Search in Google Scholar
[20] Wendt, H., Reuhl, K., & Schwarz, V. (1992). Cathodic deposition of refractory intermetallic compounds from flinakmelts—I. Voltammetric investigation of Ti, Zr, B, TiB2, and ZrB2. Electrochimica Acta, 37, 237–244. DOI: 10.1016/0013-4686(92)85009-a. http://dx.doi.org/10.1016/0013-4686(92)85009-A10.1016/0013-4686(92)85009-ASearch in Google Scholar
[21] Wiedemann, R., Oettel, H., & Jerenz, M. (1997). Structure of deposited and annealed TiB2 layers. Surface and Coatings Technology, 97, 313–321. DOI: 10.1016/s0257-8972(97)00204-1. http://dx.doi.org/10.1016/S0257-8972(97)00204-110.1016/S0257-8972(97)00204-1Search in Google Scholar
© 2012 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Immobilization in biotechnology and biorecognition: from macro- to nanoscale systems
- Bond-graph description and simulation of membrane processes: Permeation in a compartmental membrane system
- Design simulations for a biogas purification process using aqueous amine solutions
- Experimental and numerical investigation of pressure drop coefficient and static pressure difference in a tangential inlet cyclone separator
- Trace elements in Variegated Bolete (Suillus variegatus) fungi
- N,N′-methylenedipyridinium Pt(II) and Pt(IV) hybrid salts: synthesis, crystal and molecular structures of [(C5H5N)2CH2] · [PtCl4] and [(C5H5N)2CH2] · [PtCl6]
- Formation of membranes based on polyacrylonitrile and butadiene-acrylonitrile elastomer in the presence of copper ions
- One-step synthesis of solid sulfonic acid catalyst and its application in the acetalization of glycerol: crystal structure of cis-5-hydroxy-2-phenyl-1,3-dioxane trimer
- Mechanistic insights into the reaction of CF3CCl3 with SO3: Theory and experiment
- Near-infrared imaging for quantitative analysis of active component in counterfeit dimethomorph using partial least squares regression
- Corrosion of titanium diboride in molten FLiNaK(eut)
- Domino synthesis of novel series of 4-substituted 5-thioxo-1,2,4-triazolidin-3-one derivatives
- Erratum to: “Nguyen Hoang Loc, Nguyen Thanh Giang: Effects of elicitors on the enhancement of asiaticoside biosynthesis in cell cultures of centella (Centella asiatica L. Urban)”, Chemical Papers 66 (7) 642–648 (2012)
Articles in the same Issue
- Immobilization in biotechnology and biorecognition: from macro- to nanoscale systems
- Bond-graph description and simulation of membrane processes: Permeation in a compartmental membrane system
- Design simulations for a biogas purification process using aqueous amine solutions
- Experimental and numerical investigation of pressure drop coefficient and static pressure difference in a tangential inlet cyclone separator
- Trace elements in Variegated Bolete (Suillus variegatus) fungi
- N,N′-methylenedipyridinium Pt(II) and Pt(IV) hybrid salts: synthesis, crystal and molecular structures of [(C5H5N)2CH2] · [PtCl4] and [(C5H5N)2CH2] · [PtCl6]
- Formation of membranes based on polyacrylonitrile and butadiene-acrylonitrile elastomer in the presence of copper ions
- One-step synthesis of solid sulfonic acid catalyst and its application in the acetalization of glycerol: crystal structure of cis-5-hydroxy-2-phenyl-1,3-dioxane trimer
- Mechanistic insights into the reaction of CF3CCl3 with SO3: Theory and experiment
- Near-infrared imaging for quantitative analysis of active component in counterfeit dimethomorph using partial least squares regression
- Corrosion of titanium diboride in molten FLiNaK(eut)
- Domino synthesis of novel series of 4-substituted 5-thioxo-1,2,4-triazolidin-3-one derivatives
- Erratum to: “Nguyen Hoang Loc, Nguyen Thanh Giang: Effects of elicitors on the enhancement of asiaticoside biosynthesis in cell cultures of centella (Centella asiatica L. Urban)”, Chemical Papers 66 (7) 642–648 (2012)