Startseite Functional polymer thin films designed for antifouling materials and biosensors
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Functional polymer thin films designed for antifouling materials and biosensors

  • Chao Zhao EMAIL logo , Ling-Yan Li , Ming-Ming Guo und Jie Zheng
Veröffentlicht/Copyright: 5. April 2012
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Polymer thin films offer a versatile and ubiquitous platform for a wide variety of real-world applications in biomedicine, nanotechnology, catalysis, photovoltaic devices, and energy conversion and storage. Depending on the chemical composition of the polymers and the associated microenvironment, the physicochemical properties (biocompatibility, stability, wettability, adhesion, morphology, surface free energy, and others) of polymer films can be tuned for a specific application through precisely controlled surface synthesis and the incorporation of desirable and responsive functional groups. In this short review, we first summarise the methods most commonly used for the fabrication of polymer thin films. Then we discuss how these polymer thin films can be used in a selection of biomedical applications in antifouling materials and biosensors. Some directions for the rational design of polymer thin films to achieve a specific function or application are also provided.

[1] Azzaroni, O., Brown, A. A., & Huck, W. T. S. (2006). UCST wetting transitions of polyzwitterionic brushes driven by selfassociation. Angewandte Chemie International Edition, 45, 1770–1774. DOI: 10.1002/anie.200503264. http://dx.doi.org/10.1002/anie.20050326410.1002/anie.200503264Suche in Google Scholar PubMed

[2] Bai, S., Li, S., Yao, T., Hu, Y., Bao, F., Zhang, J., Zhang, Y., Zhu, S., & He, Y. (2011). Rapid detection of eight vegetable oils on optical thin-film biosensor chips. Food Control, 22, 1624–1628. DOI: 10.1016/j.foodcont.2011.03.019. http://dx.doi.org/10.1016/j.foodcont.2011.03.01910.1016/j.foodcont.2011.03.019Suche in Google Scholar

[3] Barbey, R., Lavanant, L., Paripovic, D., Schüwer, N., Sugnaux, C., Tugulu, S., & Klok, H. A. (2009). Polymer brushes via surface-initiated controlled radical polymerization: Synthesis, characterization, properties, and applications. Chemical Reviews, 109, 5437–5527. DOI: 10.1021/cr900045a. http://dx.doi.org/10.1021/cr900045a10.1021/cr900045aSuche in Google Scholar PubMed

[4] Basinska, T. (2002). Poly(styrene/acrolein) and poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) microspheres. Similarities and differences. e-Polymers, 11, 1–11. 10.1515/epoly.2002.2.1.145Suche in Google Scholar

[5] Basinska, T., Slomkowski, S., Kazmierski, S., Dworak, A., & Chehimi, M. M. (2004). Studies of the surface layer structure and properties of poly(styrene/α-t-butoxy-ω-polyglycidol) microspheres by carbon nuclear magnetic resonance, Xray photoelectron spectroscopy, and the adsorption of human serum albumin and γ-globulins. Journal of Polymer Science Part A: Polymer Chemistry, 42, 615–623. DOI: 10.1002/pola.10863. http://dx.doi.org/10.1002/pola.1086310.1002/pola.10863Suche in Google Scholar

[6] Bernand-Mantel, D., Chehimi, M. M., Millot, M. C., & Carbonnier, B. (2010). Protein-functionalized ultrathin glycidyl methacrylate polymer grafts on gold for the development of optical biosensors: an SPR investigation. Surface and Interface Analysis, 42, 1035–1040. DOI: 10.1002/sia.3469. http://dx.doi.org/10.1002/sia.346910.1002/sia.3469Suche in Google Scholar

[7] Bernards, M. T., Cheng, G., Zhang, Z., Chen, S., & Jiang, S. (2008). Nonfouling polymer brushes via surface-initiated, two-component atom transfer radical polymerization. Macromolecules, 41, 4216–4219. DOI: 10.1021/ma800185y. http://dx.doi.org/10.1021/ma800185y10.1021/ma800185ySuche in Google Scholar

[8] Blas, H., Save, M., Boissière, C., Sanchez, C., & Charleux, B. (2011). Surface-initiated nitroxide-mediated polymerization from ordered mesoporous silica. Macromolecules, 44, 2577–2588. DOI: 10.1021/ma200354r. http://dx.doi.org/10.1021/ma200354r10.1021/ma200354rSuche in Google Scholar

[9] Boozer, C., Ladd, J., Chen, S., Yu, Q., Homola, J., & Jiang, S. (2004). DNA directed protein immobilization on mixed ssDNA/oligo(ethylene glycol) self-assembled monolayers for sensitive biosensors. Analytical Chemistry, 76, 6967–6972. DOI: 10.1021/ac048908l. http://dx.doi.org/10.1021/ac048908l10.1021/ac048908lSuche in Google Scholar PubMed

[10] Brocchini, S., James, K., Tangpasuthadol, V., & Kohn, J. (1997). A combinatorial approach for polymer design. Journal of the American Chemical Society, 119, 4553–4554. DOI: 10.1021/ja970389z. http://dx.doi.org/10.1021/ja970389z10.1021/ja970389zSuche in Google Scholar

[11] Brocchini, S., James, K., Tangpasuthadol, V., & Kohn, J. (1998). Structure-property correlations in a combinatorial library of degradable biomaterials. Journal of Biomedical Materials Research, 42, 66–75. DOI: 10.1002/(sici)1097-4636(199810)42:1〈66::aid-jbm9〉3.0.co;2-m. http://dx.doi.org/10.1002/(SICI)1097-4636(199810)42:1<66::AID-JBM9>3.0.CO;2-M10.1002/(SICI)1097-4636(199810)42:1<66::AID-JBM9>3.0.CO;2-MSuche in Google Scholar

[12] Chang, Y., Chang, W. J., Shih, Y. J., Wei, T. C., & Hsiue, G. H. (2011). Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane with highly effective blood compatibility via atmospheric plasma-induced surface copolymerization. ACS Applied Materials & Interfaces, 3, 1228–1237. DOI: 10.1021/am200055k. http://dx.doi.org/10.1021/am200055k10.1021/am200055kSuche in Google Scholar

[13] Chang, Y., Chen, S., Yu, Q., Zhang, Z., Bernards, M., & Jiang, S. (2007). Development of biocompatible interpenetrating polymer networks containing a sulfobetaine-based polymer and a segmented polyurethane for protein resistance. Biomacromolecules, 8, 122–127. DOI: 10.1021/bm060739m. http://dx.doi.org/10.1021/bm060739m10.1021/bm060739mSuche in Google Scholar

[14] Chang, Y., Shu, S. H., Shih, Y. J., Chu, C. W., Ruaan, R. C., & Chen, W. Y. (2010a). Hemocompatible mixed-charge copolymer brushes of pseudozwitterionic surfaces resistant to nonspecific plasma protein fouling. Langmuir, 26, 3522–3530. DOI: 10.1021/la903172j. http://dx.doi.org/10.1021/la903172j10.1021/la903172jSuche in Google Scholar

[15] Chang, Y., Yandi, W., Chen, W. Y., Shih, Y. J., Yang, C. C., Chang, Y., Ling, Q. D., & Higuchi, A. (2010b). Tunable bioadhesive copolymer hydrogels of thermoresponsive poly(N-isopropyl acrylamide) containing zwitterionic polysulfobetaine. Biomacromolecules, 11, 1101–1110. DOI: 10.1021/bm100093g. http://dx.doi.org/10.1021/bm100093g10.1021/bm100093gSuche in Google Scholar

[16] Chelmowski, R., Koester, S. D., Kerstan, A., Prekelt, A., Grunwald, C., Winkler, T., Metzler-Nolte, N., Terfort, A., & Wöll, C. (2008). Peptide-based SAMs that resist the adsorption of proteins. Journal of the American Chemical Society, 130, 14952–14953. DOI: 10.1021/ja8065754. http://dx.doi.org/10.1021/ja806575410.1021/ja8065754Suche in Google Scholar

[17] Chen, S., Cao, Z., & Jiang, S. (2009). Ultra-low fouling peptide surfaces derived from natural amino acids. Biomaterials, 30, 5892–5896. DOI: 10.1016/j.biomaterials.2009.07.001. http://dx.doi.org/10.1016/j.biomaterials.2009.07.00110.1016/j.biomaterials.2009.07.001Suche in Google Scholar

[18] Chen, S., & Jiang, S. (2008). An new avenue to nonfouling materials. Advanced Materials, 20, 335–338. DOI: 10.1002/adma.200701164. http://dx.doi.org/10.1002/adma.20070116410.1002/adma.200701164Suche in Google Scholar

[19] Chen, S., Li, L., Zhao, C., & Zheng, J. (2010). Surface hydration, principles and applications toward low-fouling/nonfouling biomaterials. Polymer, 51, 5283–5293. DOI: 10.1016/j.polymer. 2010.08.022. Suche in Google Scholar

[20] Chen, S., Liu, L., Zhou, J., & Jiang, S. (2003). Controlling antibody orientation on charged self-assembled monolayers. Langmuir, 19, 2859–2864. DOI: 10.1021/la026498v. http://dx.doi.org/10.1021/la026498v10.1021/la026498vSuche in Google Scholar

[21] Chen, S., Zheng, J., Li, L., & Jiang, S. (2005). Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: Insights into nonfouling properties of zwitterionic materials. Journal of the American Chemical Society, 127, 14473–14478. DOI: 10.1021/ja054169u. http://dx.doi.org/10.1021/ja054169u10.1021/ja054169uSuche in Google Scholar

[22] Cheng, G., Li, G., Xue, H., Chen, S., Bryers, J. D., & Jiang, S. (2009). Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation. Biomaterials, 30, 5234–5240. DOI: 10.1016/j.biomaterials.2009.05.058. http://dx.doi.org/10.1016/j.biomaterials.2009.05.05810.1016/j.biomaterials.2009.05.058Suche in Google Scholar

[23] Cheng, G., Mi, L., Cao, Z., Xue, H., Yu, Q., Carr, L., & Jiang, S. (2010). Functionalizable and ultrastable zwitterionic nanogels. Langmuir, 26, 6883–6886. DOI: 10.1021/la100664g. http://dx.doi.org/10.1021/la100664g10.1021/la100664gSuche in Google Scholar

[24] Cheng, G., Xue, H., Zhang, Z., Chen, S., & Jiang, S. (2008). A switchable biocompatible polymer surface with selfsterilizing and nonfouling capabilities. Angewandte Chemie, 120, 8963–8966. DOI: 10.1002/ange. 200803570. http://dx.doi.org/10.1002/ange.20080357010.1002/ange.200803570Suche in Google Scholar

[25] Chu, L. Q., Knoll, W., & Förch, R. (2006). Pulsed plasma polymerized di(ethylene glycol) monovinyl ether coatings for nonfouling surfaces. Chemistry of Materials, 18, 4840–4844. DOI: 10.1021/cm061217g. http://dx.doi.org/10.1021/cm061217g10.1021/cm061217gSuche in Google Scholar

[26] Clark, L. C., & Lyons, C. (1962). Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences, 102, 29–45. DOI: 10.1111/j.1749-6632.1962.tb13623.x. http://dx.doi.org/10.1111/j.1749-6632.1962.tb13623.x10.1111/j.1749-6632.1962.tb13623.xSuche in Google Scholar

[27] Cruz-Monteagudo, M., Borges, F., Cordeiro, M.N. D. S., Cagide Fajin, J. L., Morell, C., Ruiz, R. M., Cañizares-Carmenate, Y., & Dominguez, E. R. (2008). Desirability-based methods of multiobjective optimization and ranking for global QSAR studies. Filtering safe and potent drug candidates from combinatorial libraries. Journal of Combinatorial Chememistry, 10, 897–913. DOI: 10.1021/cc800115y. 10.1021/cc800115ySuche in Google Scholar

[28] Dalsin, J. L., Hu, B. H., Lee, B. P., & Messersmith, P. B. (2003). Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. Journal of the American Chemical Society, 125, 4253–4258. DOI: 10.1021/ja0284963. http://dx.doi.org/10.1021/ja028496310.1021/ja0284963Suche in Google Scholar

[29] Dávalos-Pantoja, L., Ortega-Vinuesa, J. L., Bastos-González, D., & Hidalgo-álvarez, R. (2001). Colloidal stability of IgG- and IgY-coated latex microspheres. Colloids and Surfaces B: Biointerfaces, 20, 165–175. DOI: 10.1016/s0927-7765(00)00189-2. http://dx.doi.org/10.1016/S0927-7765(00)00189-210.1016/S0927-7765(00)00189-2Suche in Google Scholar

[30] Decher, G. (1997). Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science, 277, 1232–1237. DOI: 10.1126/science.277.5330.1232. http://dx.doi.org/10.1126/science.277.5330.123210.1126/science.277.5330.1232Suche in Google Scholar

[31] Decher, G., & Schmitt, J. (1992). Fine-tuning of the film thickness of ultrathin multilayer films composed of consecutively alternating layers of anionic and cationic polyelectrolytes. In C. Helm, M. Lösche, & H. Möhwald (Eds.), Trends in Colloid and Interface Science VI. (pp. 160–164). Berlin/Heidelberg, Germany: Springer. DOI: 10.1007/bfb0116302. http://dx.doi.org/10.1007/BFb011630210.1007/BFb0116302Suche in Google Scholar

[32] De Vos, K., Girones, J., Popelka, S., Schacht, E., Baets, R., & Bienstman, P. (2009). SOI optical microring resonator with poly(ethylene glycol) polymer brush for label-free biosensor applications. Biosensors and Bioelectronics, 24, 2528–2533. DOI: 10.1016/j.bios.2009.01.009. http://dx.doi.org/10.1016/j.bios.2009.01.00910.1016/j.bios.2009.01.009Suche in Google Scholar

[33] Di Tuoro, D., Portaccio, M., Lepore, M., Arduini, F., Moscone, D., & Mita, D. G. (2010). An acetylcholinesterase biosensor for determination of low concentrations of Paraoxon and Dichlorvos. Journal of Biotechnology, 150, S277. DOI: 10.1016/j.jbiotec.2010.09.196. http://dx.doi.org/10.1016/j.jbiotec.2010.09.19610.1016/j.jbiotec.2010.09.196Suche in Google Scholar

[34] Durand, N., Boutevin, B., Silly, G., & Améduri, B. (2011). “Grafting from” polymerization of vinylidene fluoride (VDF) from silica to achieve original silica-PVDF core-shells. Macromolecules, 44, 8487–8493. DOI: 10.1021/ma2018167. http://dx.doi.org/10.1021/ma201816710.1021/ma2018167Suche in Google Scholar

[35] Fan, X., Lin, L., Dalsin, J. L., & Messersmith, P. B. (2005). Biomimetic anchor for surface-initiated polymerization from metal substrates. Journal of the American Chemical Society, 127, 15843–15847. DOI: 10.1021/ja0532638. http://dx.doi.org/10.1021/ja053263810.1021/ja0532638Suche in Google Scholar

[36] Feng, J., Stoddart, S., Weerakoon, K. A., & Chen, W. (2006a). COLL 308-Synthesis of ultra-thin polybutadiene films by surface-initiated-ring-opening-metathesis polymerization. In Abstracts of Papers of the American Chemical Society (Vol. 232). Washington, DC, USA: American Chemical Society. Suche in Google Scholar

[37] Feng, W., Zhu, S., Ishihara, K., & Brash, J. L. (2005). Adsorption of fibrinogen and lysozyme on silicon grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surfaceinitiated atom transfer radical polymerization. Langmuir, 21, 5980–5987. DOI: 10.1021/la050277i. http://dx.doi.org/10.1021/la050277i10.1021/la050277iSuche in Google Scholar

[38] Feng, W., Zhu, S., Ishihara, K., & Brash, J. L. (2006b). Protein resistant surfaces: Comparison of acrylate graft polymers bearing oligo-ethylene oxide and phosphorylcholine side chains. Biointerphases, 1, 50–60. DOI: 10.1116/1.2187495. http://dx.doi.org/10.1116/1.218749510.1116/1.2187495Suche in Google Scholar

[39] Ferreira, M., Cheung, J. H., & Rubner, M. F. (1994). Molecular self-assembly of conjugated polyions: a new process for fabricating multilayer thin film heterostructures. Thin Solid Films, 244, 806–809. DOI: 10.1016/0040-6090(94)90575-4. http://dx.doi.org/10.1016/0040-6090(94)90575-410.1016/0040-6090(94)90575-4Suche in Google Scholar

[40] Frasconi, M., Tortolini, C., Botrè, F., & Mazzei, F. (2010). Multifunctional Au nanoparticle dendrimer-based surface plasmon resonance biosensor and its application for improved insulin detection. Analytical Chemistry, 82, 7335–7342. DOI: 10.1021/ac101319k. http://dx.doi.org/10.1021/ac101319k10.1021/ac101319kSuche in Google Scholar PubMed

[41] Fristrup, C. J., Jankova, K., & Hvilsted, S. (2009). Surfaceinitiated atom transfer radical polymerization—a technique to develop biofunctional coatings. Soft Matter, 5, 4623–4634. DOI: 10.1039/b821815c. http://dx.doi.org/10.1039/b821815c10.1039/b821815cSuche in Google Scholar

[42] Gam-Derouich, S., Gosecka, M., Lepinay, S., Turmine, M., Carbonnier, B., Basinska, T., Slomkowski, S., Millot, M. C., Othmane, A., Ben Hassen-Chehimi, D., & Chehimi, M. M. (2011). Highly hydrophilic surfaces from polyglycidol grafts with dual antifouling and specific protein recognition properties. Langmuir, 27, 9285–9294. DOI: 10.1021/la200290k. 10.1021/la200290kSuche in Google Scholar PubMed

[43] Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. Analytica Chimica Acta, 185, 1–17. DOI: 10.1016/0003-2670(86)80028-9. http://dx.doi.org/10.1016/0003-2670(86)80028-910.1016/0003-2670(86)80028-9Suche in Google Scholar

[44] Ghosh, J., Lewitus, D. Y., Chandra, P., Joy, A., Bushman, J., Knight, D., & Kohn, J. (2011). Computational modeling of in vitro biological responses on polymethacrylate surfaces. Polymer, 52, 2650–2660. DOI: 10.1016/j.polymer.2011.04. 014. http://dx.doi.org/10.1016/j.polymer.2011.04.01410.1016/j.polymer.2011.04.014Suche in Google Scholar PubMed PubMed Central

[45] Goldfarb, D. L., Burns, S. D., Vyklicky, L., Pfeiffer, D., Lisi, A., Petrillo, K., Arnold, J., Clancy, A., Lang, R. N., Medeiros, D. R., Sanders, D. P., Allen, R. D., Owe-yang, D. C., Noda, K., Tachibana, S., & Shirai, S. (2008). Graded spin-on organic bottom antireflective coating for high NA lithography. In C. L. Henderson (Ed.), Proceedings of SPIE: Advances in Resist Materials and Processing Technology XXV (Vol. 6923). San Jose, CA, USA: SPIE Digital Library. DOI: 10.1117/12.772268. 10.1117/12.772268Suche in Google Scholar

[46] Grande, C. D., Tria, M. C., Jiang, G., Ponnapati, R., & Advincula, R. (2011). Surface-grafted polymers from electropolymerized polythiophene RAFT agent. Macromolecules, 44, 966–975. DOI: 10.1021/ma102065u. http://dx.doi.org/10.1021/ma102065u10.1021/ma102065uSuche in Google Scholar

[47] Gu, H., Ho, P. L., Tsang, K. W. T., Wang, L., & Xu, B. (2003). Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other Grampositive bacteria at ultralow concentration. Journal of the American Chemical Society, 125, 15702–15703. DOI: 10.1021/ja0359310. http://dx.doi.org/10.1021/ja035931010.1021/ja0359310Suche in Google Scholar PubMed

[48] Gudipati, C. S., Finlay, J. A., Callow, J. A., Callow, M. E., & Wooley, K. L. (2005). The antifouling and fouling-release perfomance of hyperbranched fluoropolymer (HBFP)-poly (ethylene glycol) (PEG) composite coatings evaluated by adsorption of biomacromolecules and the green fouling alga Ulva. Langmuir, 21, 3044–3053. DOI: 10.1021/la048015o. http://dx.doi.org/10.1021/la048015o10.1021/la048015oSuche in Google Scholar PubMed

[49] Gurbuz, N., Demirci, S., Yavuz, S., & Caykara, T. (2011). Synthesis of cationic N-[3-(dimethylamino)propyl]methacrylamide brushes on silicon wafer via surface-initiated RAFT polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 49, 423–431. DOI: 10.1002/pola.24454. http://dx.doi.org/10.1002/pola.2445410.1002/pola.24454Suche in Google Scholar

[50] Haas, D. E., Quijada, J. N., Picone, S. J., & Birnie, D. P. (2000). Effect of solvent evaporation rate on Skin formation during spin coating of complex solutions. In B. S. Dunn, E. J. A. Pope, H. K. Schmidt, & M. Yamane (Eds.), Proceedings of SPIE: Surface and Interface Physics Papers (Vol. 3943, pp. 280–284). San Jose, CA, USA: SPIE Digital Library. DOI: 10.1117/12.384348. 10.1117/12.384348Suche in Google Scholar

[51] Harris, J. M. (1992). Poly(ethylene glycol) chemistry: Biotechnical and biomedical applications. New York, NY, USA: Plenum Press. 10.1007/978-1-4899-0703-5Suche in Google Scholar

[52] He, Y., Hower, J., Chen, S., Bernards, M. T., Chang, Y., & Jiang, S. (2008). Molecular simulation studies of protein interactions with zwitterionic phosphorylcholine self-assembled monolayers in the presence of water. Langmuir, 24, 10358–10364. DOI: 10.1021/la8013046. http://dx.doi.org/10.1021/la801304610.1021/la8013046Suche in Google Scholar PubMed

[53] Hobbs, S. K., Shi, G., & Bednarski, M. D. (2003). Synthesis of polymerized thin films for immobilized ligand display in proteomic analysis. Bioconjugate Chemistry, 14, 526–531. DOI: 10.1021/bc025637h. http://dx.doi.org/10.1021/bc025637h10.1021/bc025637hSuche in Google Scholar PubMed

[54] Holland, N. B., Qiu, Y., Ruegsegger, M., & Marchant, R. E. (1998). Biomimetic engineering of non-adhesive glycocalyxlike surfaces using oligosaccharide surfactant polymers. Nature, 392, 799–801. DOI: 10.1038/33894. http://dx.doi.org/10.1038/3389410.1038/33894Suche in Google Scholar PubMed

[55] Horák, D., Shagotova, T., Mitina, N., Trchová, M., Boiko, N., Babič, M., Stoika, R., Kovářová, J., Hevus, O., Beneš, M. J., Klyuchivska, O., Holler, P., & Zaichenko, A. (2011). Surfaceinitiated polymerization of 2-hydroxyethyl methacrylate from heterotelechelic oligoperoxide-coated Γ-Fe2O3 nanoparticles and their engulfment by mammalian cells. Chemistry of Materials, 23, 2637–2649. DOI: 10.1021/cm2004215. http://dx.doi.org/10.1021/cm200421510.1021/cm2004215Suche in Google Scholar

[56] Hower, J. C., Bernards, M. T., Chen, S., Tsao, H. K., Sheng, Y. J., & Jiang, S. (2009). Hydration of “nonfouling” functional groups. The Journal of Physical Chemistry B, 113, 197–201. DOI: 10.1021/jp8065713. http://dx.doi.org/10.1021/jp806571310.1021/jp8065713Suche in Google Scholar PubMed

[57] Hu, Z. K., Finlay, J. A., Callow, M. E., & De Simone, J. M. (2009). Novel perfluoropolyethers as fouling release coatings: Investigation of structure-property relationships relevant to fouling resistance and release. In Abstracts of Papers of the American Chemical Society (Vol. 237). Washington, DC, USA: American Chemical Society. Suche in Google Scholar

[58] Indyk, H. E. (2011). An optical biosensor assay for the determination of folate in milk and nutritional dairy products. International Dairy Journal, 21, 783–789. DOI: 10.1016/j.idairyj.2011.03.013. http://dx.doi.org/10.1016/j.idairyj.2011.03.01310.1016/j.idairyj.2011.03.013Suche in Google Scholar

[59] Ionov, L., & Diez, S. (2009). Environment-friendly photolithography using poly(N-isopropylacrylamide)-based thermoresponsive photoresists. Journal of the American Chemical Society, 131, 13315–13319. DOI: 10.1021/ja902660s. http://dx.doi.org/10.1021/ja902660s10.1021/ja902660sSuche in Google Scholar PubMed

[60] Ishihara, K. (2000). New polymeric biomaterials-phospholipid polymers with a biocompatible surface. Frontiers of Medical & Biological Engineering, 10, 83–95. DOI: 10.1163/15685570052061946. http://dx.doi.org/10.1163/1568557005206194610.1163/15685570052061946Suche in Google Scholar PubMed

[61] Issa, A. A., Al-Degs, Y. S., & Al-Rabady, N. A. (2008). Deposition of two natural clays on a Pt surface using potentiostatic and spin-coating techniques: a comparative study. Clay Minerals, 43, 501–510. DOI: 10.1180/claymin. 2008.043.3.13. http://dx.doi.org/10.1180/claymin.2008.043.3.1310.1180/claymin.2008.043.3.13Suche in Google Scholar

[62] Jampala, S. N., Sarmadi, M., Somers, E. B., Wong, A. C. L., & Denes, F. S. (2008). Plasma-enhanced synthesis of bactericidal quaternary ammonium thin layers on stainless steel and cellulose surfaces. Langmuir, 24, 8583–8591. DOI: 10.1021/la800405x. http://dx.doi.org/10.1021/la800405x10.1021/la800405xSuche in Google Scholar PubMed

[63] Jiang, S., & Cao, Z. (2010). Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Advanced Materials, 22, 920–932. DOI: 10.1002/adma.200901407. http://dx.doi.org/10.1002/adma.20090140710.1002/adma.200901407Suche in Google Scholar PubMed

[64] Jung, H. J., Chang, J., Park, Y. J., Kang, S. J., Lotz, B., Huh, J., & Park, C. (2009). Shear-induced ordering of ferroelectric crystals in spin-coated thin poly(vinylidene fluorideco-trifluoroethylene) films. Macromolecules, 42, 4148–4154. DOI: 10.1021/ma900422n. http://dx.doi.org/10.1021/ma900422n10.1021/ma900422nSuche in Google Scholar

[65] Kessler, D., Jochum, F. D., Choi, J., Char, K., & Theato, P. (2011). Reactive surface coatings based on polysilsesquiox anes: Universal method toward light-responsive surfaces. ACS Applied Materials & Interfaces, 3, 124–128. DOI: 10.1021/am1010892. http://dx.doi.org/10.1021/am101089210.1021/am1010892Suche in Google Scholar

[66] Kessler, D., Roth, P. J., & Theato, P. (2009). Reactive surface coatings based on polysilsesquioxanes: Controlled functionalization for specific protein immobilization. Langmuir, 25, 10068–10076. DOI: 10.1021/la901878h. http://dx.doi.org/10.1021/la901878h10.1021/la901878hSuche in Google Scholar

[67] Kim, Y. P., Hong, M.Y., Kim, J., Oh, E., Shon, H. K., Moon, D. W., Kim, H. S., & Lee, T. G. (2007a). Quantitative analysis of surface-immobilized protein by TOF-SIMS: Effects of protein orientation and trehalose additive. Analytical Chemistry, 79, 1377–1385. DOI: 10.1021/ac0616005. http://dx.doi.org/10.1021/ac061600510.1021/ac0616005Suche in Google Scholar

[68] Kim, Y. H., Jung, M. S., Yoon, D. K., Jee, M. G., & Jung, H. T. (2007b). A solution processible semiconducting polymer interlayer for blue light-emitting diodes. Nanotechnology, 18, 175608. DOI: 10.1088/0957-4484/18/17/175608. http://dx.doi.org/10.1088/0957-4484/18/17/17560810.1088/0957-4484/18/17/175608Suche in Google Scholar

[69] Kingshott, P., Thissen, H., & Griesser, H. J. (2002). Effects of cloud-point grafting, chain length, and density of PEG layers on competitive adsorption of ocular proteins. Biomaterials, 23, 2043–2056. DOI: 10.1016/s0142-9612(01)00334-9. http://dx.doi.org/10.1016/S0142-9612(01)00334-910.1016/S0142-9612(01)00334-9Suche in Google Scholar

[70] Konradi, R., Pidhatika, B., Mühlebach, A., & Textort, M. (2008). Poly-2-methyl-2-oxazoline: A peptide-like polymer for protein-repellent surfaces. Langmuir, 24, 613–616. DOI: 10.1021/la702917z. http://dx.doi.org/10.1021/la702917z10.1021/la702917zSuche in Google Scholar PubMed

[71] Ladd, J., Boozer, C., Yu, Q., Chen, S., Homola, J., & Jiang, S. (2004). DNA-directed protein immobilization on mixed selfassembled monolayers via a streptavidin bridge. Langmuir, 20, 8090–8095. DOI: 10.1021/la049867r. http://dx.doi.org/10.1021/la049867r10.1021/la049867rSuche in Google Scholar PubMed

[72] Ladd, J., Zhang, Z., Chen, S., Hower, J. C., & Jiang, S. (2008). Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules, 9, 1357–1361. DOI: 10.1021/bm701301s. http://dx.doi.org/10.1021/bm701301s10.1021/bm701301sSuche in Google Scholar PubMed

[73] Lee, R. S., Chen, W. H., & Lin, J. H. (2011). Polymer-grafted multi-walled carbon nanotubes through surface-initiated ring-opening polymerization and click reaction. Polymer, 52, 2180–2188. DOI: 10.1016/j.polymer.2011.03.020. http://dx.doi.org/10.1016/j.polymer.2011.03.02010.1016/j.polymer.2011.03.020Suche in Google Scholar

[74] Lerum, M. F. Z., & Chen, W. (2011). Surface-initiated ringopening metathesis polymerization in the vapor phase: An efficient method for grafting cyclic olefins with low strain energies. Langmuir, 27, 5403–5409. DOI: 10.1021/la2002892. http://dx.doi.org/10.1021/la200289210.1021/la2002892Suche in Google Scholar PubMed PubMed Central

[75] Li, G., Xue, H., Gao, C., Zhang, F., & Jiang, S. (2010). Nonfouling polyampholytes from an ion-pair comonomer with biomimetic adhesive groups. Macromolecules, 43, 14–16. DOI: 10.1021/ma902029s. http://dx.doi.org/10.1021/ma902029s10.1021/ma902029sSuche in Google Scholar PubMed PubMed Central

[76] Liu, G., & Lin, Y. (2006). Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents. Analytical Chemistry, 78, 835–843. DOI: 10.1021/ac051559q. http://dx.doi.org/10.1021/ac051559q10.1021/ac051559qSuche in Google Scholar PubMed

[77] Liu, Y. C., Wu, J. Y., Wang, S. C., Chwu, J. W., Lin, C. C., Chen, M. S., & Huang, T. (2008). Novel defect-repairing method for etched-thinning LCDs. In SID International Symposium Digest of Technical Papers, 39, 249–251. DOI: 10.1889/1.3069636. http://dx.doi.org/10.1889/1.306963610.1889/1.3069636Suche in Google Scholar

[78] Lu, D. F., Qi, Z. M., & Liu, R. P. (2011). An interferometric biosensor composed of a prism-chamber assembly and a composite waveguide with a Ta2O5 nanometric layer. Sensors and Actuators B: Chemical, 157, 575–580. DOI: 10.1016/j.snb.2011.05.025. http://dx.doi.org/10.1016/j.snb.2011.05.02510.1016/j.snb.2011.05.025Suche in Google Scholar

[79] Lubambo, A. F., Lucyszyn, N., Petzhold, C. L., de Camargo, P. C., Sierakowski, M. R., Schreiner, W. H., & Saul, C. K. (2011). Self-assembled polystyrene/xyloglucan nanospheres from spin coating evaporating mixtures. Carbohydrate Polymers, 84, 126–132. DOI: 10.1016/j.carbpol.2010.11.010. http://dx.doi.org/10.1016/j.carbpol.2010.11.01010.1016/j.carbpol.2010.11.010Suche in Google Scholar

[80] Luk, Y. Y., Kato, M., & Mrksich, M. (2000). Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir, 16, 9604–9608. DOI: 10.1021/la0004653. http://dx.doi.org/10.1021/la000465310.1021/la0004653Suche in Google Scholar

[81] Ma, H., He, J., Liu, X., Gan, J., Jin, G., & Zhou, J. (2010). Surface initiated polymerization from substrates of low initiator density and its applications in biosensors. ACS Applied Materials & Interfaces, 2, 3223–3230. DOI: 10.1021/am1006832. http://dx.doi.org/10.1021/am100683210.1021/am1006832Suche in Google Scholar PubMed

[82] Ma, H., Hyun, J., Stiller, P., & Chilkoti, A. (2004). “Nonfouling” oligo(ethylene glycol)-functionalized polymer brushes synthesized by surface-initiated atom transfer radical polymerization. Advanced Materials, 16, 338–341. DOI: 10.1002/adma.200305830. http://dx.doi.org/10.1002/adma.20030583010.1002/adma.200305830Suche in Google Scholar

[83] Mahadeva, S. K., & Kim, J. (2011). Conductometric glucose biosensor made with cellulose and tin oxide hybrid nanocomposite. Sensors and Actuators B: Chemical, 157, 177–182. DOI: 10.1016/j.snb.2011.03.046. http://dx.doi.org/10.1016/j.snb.2011.03.04610.1016/j.snb.2011.03.046Suche in Google Scholar

[84] Mahmud, G., Huda, S., Yang, W., Kandere-Grzybowska, K., Pilans, D., Jiang, S., & Grzybowski, B. A. (2011). Carboxybetaine methacrylate polymers offer robust, long-term protection against cell adhesion. Langmuir, 27, 10800–10804. DOI: 10.1021/la201066y. http://dx.doi.org/10.1021/la201066y10.1021/la201066ySuche in Google Scholar PubMed PubMed Central

[85] Maier, W. F., Stöwe, K., & Sieg, S. (2007). Combinatorial and high-throughput materials science. Angewandte Chemie International Edition, 46, 6016–6067. DOI: 10.1002/anie.200603675. http://dx.doi.org/10.1002/anie.20060367510.1002/anie.200603675Suche in Google Scholar PubMed

[86] Martwiset, S., Koh, A. E., & Chen, W. (2006). Nonfouling characteristics of dextran-containing surfaces. Langmuir, 22, 8192–8196. DOI: 10.1021/la061064b. http://dx.doi.org/10.1021/la061064b10.1021/la061064bSuche in Google Scholar PubMed PubMed Central

[87] McMahon, C. P., Rocchitta, G., Serra, P. A., Kirwan, S. M., Lowry, J. P., & O’Neill, R. D. (2006). Control of the oxygen dependence of an implantable polymer/enzyme composite biosensor for glutamate. Analytical Chemistry, 78, 2352–2359. DOI: 10.1021/ac0518194. http://dx.doi.org/10.1021/ac051819410.1021/ac0518194Suche in Google Scholar PubMed

[88] Meier, M. A. R., & Schubert, U. S. (2004). Combinatorial polymer research and high-throughput experimentation: powerful tools for the discovery and evaluation of new materials. Journal of Materials Chemistry, 14, 3289–3299. DOI: 10.1039/b406497f. http://dx.doi.org/10.1039/b406497f10.1039/b406497fSuche in Google Scholar

[89] Merulla, D., Buffi, N., van Lintel, H., Renaud, P., & van der Meer, J. R. (2010). Development of a bacterial biosensor for arsenite detection. Journal of Biotechnology, 150, S224–S225. DOI: 10.1016/j.jbiotec.2010.09.058. http://dx.doi.org/10.1016/j.jbiotec.2010.09.05810.1016/j.jbiotec.2010.09.058Suche in Google Scholar

[90] Mhamdi, L., Picart, C., Lagneau, C., Othmane, A., Grosgogeat, B., Jaffrezic-Renault, N., & Ponsonnet, L. (2006). Study of the polyelectrolyte multilayer thin films’ properties and correlation with the behavior of the human gingival fibroblasts. Materials Science and Engeneering: C, 26, 273–281. DOI: 10.1016/j.msec.2005.10.049. http://dx.doi.org/10.1016/j.msec.2005.10.04910.1016/j.msec.2005.10.049Suche in Google Scholar

[91] Min, H., Park, J. W., Shon, H. K., Moon, D. W., & Lee, T. G. (2008). ToF-SIMS study on the cleaning methods of Au surface and their effects on the reproducibility of self-assembled monolayers. Applied Surface Science, 255, 1025–1028. DOI: 10.1016/j.apsusc.2008.05.099. http://dx.doi.org/10.1016/j.apsusc.2008.05.09910.1016/j.apsusc.2008.05.099Suche in Google Scholar

[92] Minko, S., Patil, S., Datsyuk, V., Simon, F., Eichhorn, K. J., Motornov, M., Usov, D., Tokarev, I., & Stamm, M. (2002). Synthesis of adaptive polymer brushes via “grafting to” approach from melt. Langmuir, 18, 289–296. DOI: 10.1021/la015637q. http://dx.doi.org/10.1021/la015637q10.1021/la015637qSuche in Google Scholar

[93] Mo, Y., & Bai, M. (2008). Preparation and adhesion of a dualcomponent self-assembled dual-layer film on silicon by a dip-coating nanoparticles method. The Journal of Physical Chemistry C, 112, 11257–11264. DOI: 10.1021/jp802608m. http://dx.doi.org/10.1021/jp802608m10.1021/jp802608mSuche in Google Scholar

[94] Mouri, M., Ikawa, T., Narita, M., Hoshino, F., & Watanabe, O. (2010). Orientation control of photo-immobilized antibodies on the surface of azobenzene-containing polymers by the introduction of functional groups. Macromolecular Bioscience, 10, 612–620. DOI: 10.1002/mabi.200900394. http://dx.doi.org/10.1002/mabi.20090039410.1002/mabi.200900394Suche in Google Scholar PubMed

[95] Mrabet, B., Nguyen, M. N., Majbri, A., Mahouche, S., Turmine, M., Bakhrouf, A., & Chehimi, M. M. (2009). Anti-fouling poly(2-hydoxyethyl methacrylate) surface coatings with specific bacteria recognition capabilities. Surface Science, 603, 2422–2429. DOI: 10.1016/j.susc.2009.05.020. http://dx.doi.org/10.1016/j.susc.2009.05.02010.1016/j.susc.2009.05.020Suche in Google Scholar

[96] Nakayama, H., Oshima, T., Shinmyo, A., & Ogasawara, N. (2010). Development of whole-cell biosensor using a moderate halophilic bacterium, Halomonas elongata, for monitoring metals in high salinity environments. Journal of Biotechnology, 150, S226. DOI: 10.1016/j.jbiotec.2010.09.062. http://dx.doi.org/10.1016/j.jbiotec.2010.09.06210.1016/j.jbiotec.2010.09.062Suche in Google Scholar

[97] Nam, J. M., Thaxton, C. S., & Mirkin, C. A. (2003). Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science, 301, 1884–1886. DOI: 10.1126/science. 1088755. http://dx.doi.org/10.1126/science.108875510.1126/scienceSuche in Google Scholar

[98] Neubert, H., Jacoby, E. S., Bansal, S. S., Iles, R. K., Cowan, D. A., & Kicman, A. T. (2002). Enhanced affinity capture MALDI-TOFMS: Orientation of an immunoglobulin G using recombinant protein G. Analytical Chemistry, 74, 3677–3683. DOI: 10.1021/ac025558z. http://dx.doi.org/10.1021/ac025558z10.1021/ac025558zSuche in Google Scholar PubMed

[99] Orski, S. V., Fries, K. H., Sontag, S. K., & Locklin, J. (2011). Fabrication of nanostructures using polymer brushes. Journal of Materials Chemistry, 21, 14135–14149. DOI: 10.1039/c1jm11039j. http://dx.doi.org/10.1039/c1jm11039j10.1039/c1jm11039jSuche in Google Scholar

[100] Pathak, S., Singh, A. K., McElhanon, J. R., & Dentinger, P. M. (2004). Dendrimer-activated surfaces for high density and high activity protein chip applications. Langmuir, 20, 6075–6079. DOI: 10.1021/la036271f. http://dx.doi.org/10.1021/la036271f10.1021/la036271fSuche in Google Scholar PubMed

[101] Pertsin, A. J., & Grunze, M. (2000). Computer simulation of water near the surface of oligo(ethylene glycol)-terminated alkanethiol self-assembled monolayers. Langmuir, 16, 8829–8841. DOI: 10.1021/la000340y. http://dx.doi.org/10.1021/la000340y10.1021/la000340ySuche in Google Scholar

[102] Peyman, S. A., Iles, A., & Pamme, N. (2009). Mobile magnetic particles as solid-supports for rapid surface-based bioanalysis in continuous flow. Lab on a Chip, 9, 3110–3117. DOI: 10.1039/b904724g. http://dx.doi.org/10.1039/b904724g10.1039/b904724gSuche in Google Scholar PubMed

[103] Peyratout, C. S., & Dähne, L. (2004). Tailor-made polyelectrolyte microcapsules: From multilayers to smart containers. Angewandte Chemie International Edition, 43, 3762–3783. DOI: 10.1002/anie.200300568. http://dx.doi.org/10.1002/anie.20030056810.1002/anie.200300568Suche in Google Scholar PubMed

[104] Picart, C. (2008). Polyelectrolyte multilayer films: From physico-chemical properties to the control of cellular processes. Current Medicinal Chemistry, 15, 685–697. DOI: 10.2174/092986708783885219. http://dx.doi.org/10.2174/09298670878388521910.2174/092986708783885219Suche in Google Scholar PubMed

[105] Potyrailo, R. A., McCloskey, P. J., Wroczynski, R. J., & Morris, W. G. (2006). High-throughput determination of quantitative structure-property relationships using a resonant multisensor system: Solvent resistance of bisphenol A polycarbonate copolymers. Analytical Chemistry, 78, 3090–3096. DOI: 10.1021/ac0519662. http://dx.doi.org/10.1021/ac051966210.1021/ac0519662Suche in Google Scholar PubMed

[106] Potyrailo, R., Rajan, K., Stoewe, K., Takeuchi, I., Chisholm, B., & Lam, H. (2011). Combinatorial and high-throughput screening of materials libraries: Review of state of the art. ACS Combinatorial Science, 13, 579–633. DOI: 10.1021/co200007w. http://dx.doi.org/10.1021/co200007w10.1021/co200007wSuche in Google Scholar PubMed

[107] Rahane, S. B., Kilbey, S. M., & Metters, A. T. (2008). Kinetic modeling of surface-initiated photoiniferter-mediated photopolymerization in presence of tetraethylthiuram disulfide. Macromolecules, 41, 9612–9618. DOI: 10.1021/ma702516w. http://dx.doi.org/10.1021/ma702516w10.1021/ma702516wSuche in Google Scholar

[108] Rahane, S. B., Metters, A. T., & Kilbey, S. M. (2006). Impact of added tetraethylthiuram disulfide deactivator on the kinetics of growth and reinitiation of poly(methyl methacrylate) brushes made by surface-initiated photoiniferter-mediated photopolymerization. Macromolecules, 39, 8987–8991. DOI: 10.1021/ma0617217. http://dx.doi.org/10.1021/ma061721710.1021/ma0617217Suche in Google Scholar

[109] Rahane, S. B., Metters, A. T., & Kilbey, S. M. (2010). Modeling of reinitiation ability of polymer brushes grown by surface-initiated photoiniferter-mediated photopolymerization. Journal of Polymer Science Part A: Polymer Chemistry, 48, 1586–1593. DOI: 10.1002/pola.23913. http://dx.doi.org/10.1002/pola.2391310.1002/pola.23913Suche in Google Scholar

[110] Ramanathan, K., Bangar, M. A., Yun, M., Chen, W., Myung, N. V., & Mulchandani, A. (2005). Bioaffinity sensing using biologically functionalized conducting-polymer nanowire. Journal of the American Chemical Society, 127, 496–497. DOI: 10.1021/ja044486l. http://dx.doi.org/10.1021/ja044486l10.1021/ja044486lSuche in Google Scholar PubMed

[111] Reynolds, C. H. (1999). Designing diverse and focused combinatorial libraries of synthetic polymers. Journal of Combinatorial Chemistry, 1, 297–306. DOI: 10.1021/cc9900044. http://dx.doi.org/10.1021/cc990004410.1021/cc9900044Suche in Google Scholar

[112] Rodriguez-Emmenegger, C., Avramenko, O. A., Brynda, E., Skvor, J., & Bologna Alles, A. (2011). Poly(HEMA) brushes emerging as a new platform for direct detection of food pathogen in milk samples. Biosensors and Bioelectronics, 26, 4545–4551. DOI: 10.1016/j.bios.2011.05.021. http://dx.doi.org/10.1016/j.bios.2011.05.02110.1016/j.bios.2011.05.021Suche in Google Scholar PubMed

[113] Rogers, D., & Hopfinger, A. J. (1994). Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships. Journal of Chemical Information and Modeling, 34, 854–866. DOI: 10.1021/ci00020a020. http://dx.doi.org/10.1021/ci00020a02010.1021/ci00020a020Suche in Google Scholar

[114] Sardesai, N. P., Barron, J. C., & Rusling, J. F. (2011). Carbon nanotube microwell array for sensitive electrochemilu-minescent detection of cancer biomarker proteins. Analytical Chemistry, 83, 6698–6703. DOI: 10.1021/ac201292q. 10.1021/ac201292qSuche in Google Scholar

[115] Schubert, D. W., & Dunkel, T. (2003). Spin coating from a molecular point of view: its concentration regimes, influence of molar mass and distribution. Materials Research Innovations, 7, 314–321. DOI: 10.1007/s10019-003-0270-2. http://dx.doi.org/10.1007/s10019-003-0270-210.1007/s10019-003-0270-2Suche in Google Scholar

[116] Shen, M., Wagner, M. S., Castner, D. G., Ratner, B. D., & Horbett, T. A. (2003). Multivariate surface analysis of plasma-deposited tetraglyme for reduction of protein adsorption and monocyte adhesion. Langmuir, 19, 1692–1699. DOI: 10.1021/la0259297. http://dx.doi.org/10.1021/la025929710.1021/la0259297Suche in Google Scholar

[117] Shimura, M., & Hayakawa, T. (2010). Development of a biosensor for toluene in water. Journal of Biotechnology, 150, S214. DOI: 10.1016/j.jbiotec.2010.09.033. http://dx.doi.org/10.1016/j.jbiotec.2010.09.03310.1016/j.jbiotec.2010.09.033Suche in Google Scholar

[118] Statz, A. R., Barron, A. E., & Messersmith, P. B. (2008). Protein, cell and bacterial fouling resistance of polypeptoidmodified surfaces: effect of side-chain chemistry. Soft Matter, 4, 131–139. DOI: 10.1039/b711944e. http://dx.doi.org/10.1039/b711944e10.1039/B711944ESuche in Google Scholar

[119] Statz, A. R., Meagher, R. J., Barron, A. E., & Messersmith, P. B. (2005). New peptidomimetic polymers for antifouling surfaces. Journal of the American Chemical Society, 127, 7972–7973. DOI: 10.1021/ja0522534. http://dx.doi.org/10.1021/ja052253410.1021/ja0522534Suche in Google Scholar

[120] Stein, J., Truby, K., Wood, C. D., Takemori, M., Vallance, M., Swain, G., Kavanagh, C., Kovach, B., Schultz, M., Wiebe, D., Holm, E., Montemarano, J., Wendt, D., Smith, C., & Meyer, A. (2003). Structure-property relationships of silicone biofouling-release coatings: Effect of silicone network architecture on pseudobarnacle attachment strengths. Biofouling, 19, 87–94. DOI: 10.1080/0892701031000095221. http://dx.doi.org/10.1080/089270103100009522110.1080/0892701031000095221Suche in Google Scholar

[121] Steinhauer, C., Wingren, C., Khan, F., He, M., Taussig, M. J., & Borrebaeck, C. A. K. (2006). Improved affinity coupling for antibody microarrays: Engineering of double-(His)6-tagged single framework recombinant antibody fragments. PROTEOMICS, 6, 4227–4234. DOI: 10.1002/pmic.200600036. http://dx.doi.org/10.1002/pmic.20060003610.1002/pmic.200600036Suche in Google Scholar

[122] Steitz, R., Leiner, V., Siebrecht, R., & v. Klitzing, R. (2000). Influence of the ionic strength on the structure of polyelectrolyte films at the solid/liquid interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 163, 63–70. DOI: 10.1016/s0927-7757(99)00431-8. http://dx.doi.org/10.1016/S0927-7757(99)00431-810.1016/S0927-7757(99)00431-8Suche in Google Scholar

[123] Stockton, W. B., & Rubner, M. F. (1997). Molecular-level processing of conjugated polymers. 4. Layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions. Macromolecules, 30, 2717–2725. DOI: 10.1021/ma9700486. http://dx.doi.org/10.1021/ma970048610.1021/ma9700486Suche in Google Scholar

[124] Suh, C., Rajagopalan, A., Li, X., & Rajan, K. (2002). The application of Principal Component Analysis to materials science data. Data Science Journal, 1, 19–26. DOI: 10.2481/dsj.1.19. http://dx.doi.org/10.2481/dsj.1.1910.2481/dsj.1.19Suche in Google Scholar

[125] Swain, M. D., Octain, J., & Benson, D. E. (2008). Unimolecular, soluble semiconductor nanoparticle-based biosensors for thrombin using charge/electron transfer. Bioconjugate Chemistry, 19, 2520–2526. DOI: 10.1021/bc8003952. http://dx.doi.org/10.1021/bc800395210.1021/bc8003952Suche in Google Scholar PubMed

[126] Tajima, N., Takai, M., & Ishihara, K. (2011). Significance of antibody orientation unraveled: Well-oriented antibodies recorded high binding affinity. Analytical Chemistry, 83, 1969–1976. DOI: 10.1021/ac1026786. http://dx.doi.org/10.1021/ac102678610.1021/ac1026786Suche in Google Scholar PubMed

[127] Tawa, K., Yokota, Y., Kintaka, K., Nishii, J., & Nakaoki, T. (2011). An application of a plasmonic chip with enhanced fluorescence to a simple biosensor with extended dynamic range. Sensors and Actuators B: Chemical, 157, 703–709. DOI: 10.1016/j.snb.2011.04.086. http://dx.doi.org/10.1016/j.snb.2011.04.08610.1016/j.snb.2011.04.086Suche in Google Scholar

[128] Taylor, W., & Jones, R. A. L. (2010). Producing high-density high-molecular-weight polymer brushes by a “grafting to” method from a concentrated homopolymer solution. Langmuir, 26, 13954–13958. DOI: 10.1021/la101881j. http://dx.doi.org/10.1021/la101881j10.1021/la101881jSuche in Google Scholar PubMed

[129] Tetko, I. V., Villa, A. E. P., & Livingstone, D. J. (1996). Neural network studies. 2. Variable selection. Journal of Chemical Information and Modeling, 36, 794–803. DOI: 10.1021/ci950204c. http://dx.doi.org/10.1021/ci950204c10.1021/ci950204cSuche in Google Scholar PubMed

[130] Tria, M. C. R., & Advincula, R. C. (2011). Electropatterning of binary polymer brushes by surface-initiated RAFT and ATRP. Macromolecular Rapid Communications, 32, 966–971. DOI: 10.1002/marc.201100050. http://dx.doi.org/10.1002/marc.20110005010.1002/marc.201100050Suche in Google Scholar PubMed

[131] Tsai, H. Y., Chan, J. R., Li, Y. C., Cheng, F. C., & Bor Fuh, C. (2010). Determination of hepatitis B surface antigen using magnetic immunoassays in a thin channel. Biosensors and Bioelectronics, 25, 2701–2705. DOI: 10.1016/j.bios.2010.04.035. http://dx.doi.org/10.1016/j.bios.2010.04.03510.1016/j.bios.2010.04.035Suche in Google Scholar PubMed

[132] v. Klitzing, R. (2006). Internal structure of polyelectrolyte multilayer assemblies. Physical Chemistry Chemical Physics, 8, 5012–5033. DOI: 10.1039/b607760a. http://dx.doi.org/10.1039/b607760a10.1039/b607760aSuche in Google Scholar PubMed

[133] Vaisocherová, H., Yang, W., Zhang, Z., Cao, Z., Cheng, G., Piliarik, M., Homola, J., & Jiang, S. (2008). Ultralow fouling and functionalizable surface chemistry based on a zwitterionic polymer enabling sensitive and specific protein detection in undiluted blood plasma. Analytical Chemistry, 80, 7894–7901. DOI: 10.1021/ac8015888. http://dx.doi.org/10.1021/ac801588810.1021/ac8015888Suche in Google Scholar PubMed

[134] Vaisocherová, H., Zhang, Z., Yang, W., Cao, Z., Cheng, G., Taylor, A. D., Piliarik, M., Homola, J., & Jiang, S. (2009). Functionalizable surface platform with reduced nonspecific protein adsorption from full blood plasma-Material selection and protein immobilization optimization. Biosensors and Bioelectronics, 24, 1924–1930. DOI: 10.1016/j.bios.2008.09.035. http://dx.doi.org/10.1016/j.bios.2008.09.03510.1016/j.bios.2008.09.035Suche in Google Scholar PubMed

[135] Vallina-García, R., García-Suárez, M. del M., Fernández-Abedul, M. T., Méndez, F. J., & Costa-García, A. (2007). Oriented immobilisation of anti-pneumolysin Fab through a histidine tag for electrochemical immunosensors. Biosensors and Bioelectronics, 23, 210–217. DOI: 10.1016/j.bios.2007.04.001. http://dx.doi.org/10.1016/j.bios.2007.04.00110.1016/j.bios.2007.04.001Suche in Google Scholar PubMed

[136] Vijayendran, R. A., & Leckband, D. E. (2001). A quantitative assessment of heterogeneity for surface-immobilized proteins. Analytical Chemistry, 73, 471–480. DOI: 10.1021/ac000523p. http://dx.doi.org/10.1021/ac000523p10.1021/ac000523pSuche in Google Scholar PubMed

[137] Wang, Y., Dostalek, J., & Knoll, W. (2011a). Magnetic nanoparticle-enhanced biosensor based on grating-coupled surface plasmon resonance. Analytical Chemistry, 83, 6202–6207. DOI: 10.1021/ac200751s. http://dx.doi.org/10.1021/ac200751s10.1021/ac200751sSuche in Google Scholar PubMed

[138] Wang, L., Fu, Y., Wang, Z., Fan, Y., & Zhang, X. (1999). Investigation into an alternating multilayer film of poly(4-vinylpyridine) and poly(acrylic acid) based on hydrogen bonding. Langmuir, 15, 1360–1363. DOI: 10.1021/la981181+. http://dx.doi.org/10.1021/la981181+10.1021/la981181+Suche in Google Scholar

[139] Wang, G., Gao, Y., Huang, H., & Su, X. (2010). Multiplex immunoassays of equine virus based on fluorescent encoded magnetic composite nanoparticles. Analytical and Bioanalytical Chemistry, 398, 805–813. DOI: 10.1007/s00216-010-4001-4. http://dx.doi.org/10.1007/s00216-010-4001-410.1007/s00216-010-4001-4Suche in Google Scholar PubMed

[140] Wang, J. S., & Matyjaszewski, K. (1995). Controlled/“living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. Journal of the American Chemical Society, 117, 5614–5615. DOI: 10.1021/ja00125a035. 10.1021/ja00125a035Suche in Google Scholar

[141] Wang, J., Song, D., Wang, L., Zhang, H., Zhang, H., & Sun, Y. (2011b). Design and performances of immunoassay based on SPR biosensor with Au/Ag alloy nanocomposites. Sensors and Actuators B: Chemical, 157, 547–553. DOI: 10.1016/j.snb.2011.05.020. http://dx.doi.org/10.1016/j.snb.2011.05.02010.1016/j.snb.2011.05.020Suche in Google Scholar

[142] Wang, L., Tang, G., & Xu, Z. K. (2008). Comparison of waterbased and solvent-based tape casting for preparing multilayer ZnO varistors. Journal of the American Ceramic Society, 91, 3742–3745. DOI: 10.1111/j.1551-2916.2008.02677.x. http://dx.doi.org/10.1111/j.1551-2916.2008.02677.x10.1111/j.1551-2916.2008.02677.xSuche in Google Scholar

[143] Wang, B., Weldon, A. L., Kumnorkaew, P., Xu, B., Gilchrist, J. F., & Cheng, X. (2011c). Effect of surface nanotopography on immunoaffinity cell capture in microfluidic devices. Langmuir, 27, 11229–11237. DOI: 10.1021/la2015868. http://dx.doi.org/10.1021/la201586810.1021/la2015868Suche in Google Scholar PubMed

[144] Whitcombe, M. J., Chianella, I., Larcombe, L., Piletsky, S. A., Noble, J., Porter, R., & Horgan, A. (2011). The rational development of molecularly imprinted polymer-based sensors for protein detection. Chemical Society Reviews, 40, 1547–1571. DOI: 10.1039/c0cs00049c. http://dx.doi.org/10.1039/c0cs00049c10.1039/C0CS00049CSuche in Google Scholar

[145] White, A., & Jiang, S. (2011). Local and bulk hydration of zwitterionic glycine and its analogues through molecular simulations. The Journal of Physical Chemistry B, 115, 660–667. DOI: 10.1021/jp1067654. http://dx.doi.org/10.1021/jp106765410.1021/jp1067654Suche in Google Scholar PubMed

[146] Wichterle, O., & Lím, D. (1960). Hydrophilic gels for biological use. Nature, 185, 117–118. DOI: 10.1038/185117a0. http://dx.doi.org/10.1038/185117a010.1038/185117a0Suche in Google Scholar

[147] Wyszogrodzka, M., & Haag, R. (2009). Synthesis and characterization of glycerol dendrons, self-assembled monolayers on gold: A detailed study of their protein resistance. Biomacromolecules, 10, 1043–1054. DOI: 10.1021/bm801093t. http://dx.doi.org/10.1021/bm801093t10.1021/bm801093tSuche in Google Scholar PubMed

[148] Yang, W., Chen, S., Cheng, G., Vaisocherová, H., Xue, H., Li, W., Zhang, J., & Jiang, S. (2008). Film thickness dependence of protein adsorption from blood serum and plasma onto poly(sulfobetaine)-grafted surfaces. Langmuir, 24, 9211–9214. DOI: 10.1021/la801487f. http://dx.doi.org/10.1021/la801487f10.1021/la801487fSuche in Google Scholar PubMed

[149] Yang, M., Tsang, E. M. W., Wang, Y. A., Peng, X., & Yu, H. Z. (2005). Bioreactive surfaces prepared via the self-assembly of dendron thiols and subsequent dendrimer bridging reactions. Langmuir, 21, 1858–1865. DOI: 10.1021/la047459h. http://dx.doi.org/10.1021/la047459h10.1021/la047459hSuche in Google Scholar PubMed

[150] Yang, W., Xue, H., Li, W., Zhang, J., & Jiang, S. (2009). Pursuing “zero” protein adsorption of poly(carboxybetaine) from undiluted blood serum and plasma. Langmuir, 25, 11911–11916. DOI: 10.1021/la9015788. http://dx.doi.org/10.1021/la901578810.1021/la9015788Suche in Google Scholar PubMed

[151] Ye, S., Majumdar, P., Chisholm, B., Stafslien, S., & Chen, Z. (2010a). Antifouling and antimicrobial mechanism of tethered quaternary ammonium salts in a cross-linked poly(dimethylsiloxane) matrix studied using sum frequency generation vibrational spectroscopy. Langmuir, 26, 16455–16462. DOI: 10.1021/la1001539. http://dx.doi.org/10.1021/la100153910.1021/la1001539Suche in Google Scholar PubMed

[152] Ye, S., Nguyen, K. T., Boughton, A. P., Mello, C. M., & Chen, Z. (2010b). Orientation difference of chemically immobilized and physically adsorbed biological molecules on polymers detected at the solid/liquid interfaces in situ. Langmuir, 26, 6471–6477. DOI: 10.1021/la903932w. http://dx.doi.org/10.1021/la903932w10.1021/la903932wSuche in Google Scholar PubMed PubMed Central

[153] Ye, F., Wu, C., Jin, Y., Wang, M., Chan, Y. H., Yu, J., Sun, W., Hayden, S., & Chiu, D. T. (2012). A compact nad highly fluorescent orange-emitting polymer dot for specific subcellular imaging. Chemical Communications, 48, 1778–1780. DOI: 10.1039/c2cc16486h. http://dx.doi.org/10.1039/c2cc16486h10.1039/c2cc16486hSuche in Google Scholar PubMed PubMed Central

[154] Yebra, D. M., Kiil, S., & Dam-Johansen, K. (2004). Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Progress in Organic Coatings, 50, 75–104. DOI: 10.1016/j.porgcoat.2003.06.001. http://dx.doi.org/10.1016/j.porgcoat.2003.06.00110.1016/j.porgcoat.2003.06.001Suche in Google Scholar

[155] Yu, X., Munge, B., Patel, V., Jensen, G., Bhirde, A., Gong, J. D., Kim, S. N., Gillespie, J., Gutkind, J. S., Papadimitrakopoulos, F., & Rusling, J. F. (2006). Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. Journal of the American Chemical Society, 128, 11199–11205. DOI: 10.1021/ja062117e. http://dx.doi.org/10.1021/ja062117e10.1021/ja062117eSuche in Google Scholar PubMed PubMed Central

[156] Yuan, S., Wan, D., Liang, B., Pehkonen, S. O., Ting, Y. P., Neoh, K. G., & Kang, E. T. (2011). Lysozyme-coupled poly(poly(ethylene glycol) methacrylate)-stainless steel hybrids and their antifouling and antibacterial surfaces. Langmuir, 27, 2761–2774. DOI: 10.1021/la104442f. http://dx.doi.org/10.1021/la104442f10.1021/la104442fSuche in Google Scholar PubMed

[157] Zan, H. W., & Hsu, T. Y. (2011). Stable encapsulated organic TFT with a spin-coated poly(4-vinylphenol-co-methyl methacrylate) dielectric. Electron Device Letters, IEEE, 32, 1131–1133. DOI: 10.1109/led.2011.2155026. http://dx.doi.org/10.1109/LED.2011.215502610.1109/LED.2011.2155026Suche in Google Scholar

[158] Zhang, Z., Chen, S., & Jiang, S. (2006). Dual-functional biomimetic materials: Nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules, 7, 3311–3315. DOI: 10.1021/bm060750m. http://dx.doi.org/10.1021/bm060750m10.1021/bm060750mSuche in Google Scholar PubMed

[159] Zhang, M., & Horbett, T. A. (2009). Tetraglyme coatings reduce fibrinogen and von Willebrand factor adsorption and platelet adhesion under both static and flow conditions. Journal of Biomedical Materials Research Part A, 89A, 791–803. DOI: 10.1002/jbm.a.32085. http://dx.doi.org/10.1002/jbm.a.3208510.1002/jbm.a.32085Suche in Google Scholar PubMed PubMed Central

[160] Zhang, H., Lee, M. Y., Hogg, M. G., Dordick, J. S., & Sharfstein, S. T. (2010a). Gene delivery in three-dimensional cell cultures by superparamagnetic nanoparticles. ACS Nano, 4, 4733–4743. DOI: 10.1021/nn9018812. http://dx.doi.org/10.1021/nn901881210.1021/nn9018812Suche in Google Scholar PubMed

[161] Zhang, X., Teng, Y., Fu, Y., Xu, L., Zhang, S., He, B., Wang, C., & Zhang, W. (2010b). Lectin-based biosensor strategy for electrochemical assay of glycan expression on living cancer cells. Analytical Chemistry, 82, 9455–9460. DOI: 10.1021/ac102132p. http://dx.doi.org/10.1021/ac102132p10.1021/ac102132pSuche in Google Scholar PubMed

[162] Zhang, Z., Zhang, M., Chen, S., Horbett, T. A., Ratner, B. D., & Jiang, S. (2008). Blood compatibility of surfaces with superlow protein adsorption. Biomaterials, 29, 4285–4291. DOI: 10.1016/j.biomaterials.2008.07.039. http://dx.doi.org/10.1016/j.biomaterials.2008.07.03910.1016/j.biomaterials.2008.07.039Suche in Google Scholar PubMed

[163] Zhao, C., Li, L., Wang, Q., Yu, Q., & Zheng, J. (2011). Effect of film thickness on the antifouling performance of poly(hydroxy-functional methacrylates) grafted surfaces. Langmuir, 27, 4906–4913. DOI: 10.1021/la200061h. http://dx.doi.org/10.1021/la200061h10.1021/la200061hSuche in Google Scholar PubMed

[164] Zhao, C., Li, L., & Zheng, J. (2010). Achieving highly effective nonfouling performance for surface-grafted poly(HPMA) via atom-transfer radical polymerization. Langmuir, 26, 17375–17382. DOI: 10.1021/la103382j. http://dx.doi.org/10.1021/la103382j10.1021/la103382jSuche in Google Scholar PubMed

[165] Zhao, C., & Zheng, J. (2011). Synthesis and characterization of poly(N-hydroxyethylacrylamide) for long-term antifouling ability. Biomacromolecules, 12, 4071–4079. DOI: 10.1021/bm2011455. http://dx.doi.org/10.1021/bm201145510.1021/bm2011455Suche in Google Scholar PubMed

[166] Zheng, J., Li, L., Chen, S., & Jiang, S. (2004). Molecular simulation study of water interactions with oligo (ethylene glycol)-terminated alkanethiol self-assembled monolayers. Langmuir, 20, 8931–8938. DOI: 10.1021/la036345n. http://dx.doi.org/10.1021/la036345n10.1021/la036345nSuche in Google Scholar PubMed

[167] Zheng, J., Li, L., Tsao, H. K., Sheng, Y. J., Chen, S., & Jiang, S. (2005). Strong repulsive forces between protein and oligo (ethylene glycol) self-assembled monolayers: A molecular simulation study. Biophysical Journal, 89, 158–166. DOI: 10.1529/biophysj.105.059428. http://dx.doi.org/10.1529/biophysj.105.05942810.1529/biophysj.105.059428Suche in Google Scholar PubMed PubMed Central

[168] Zhou, J., Chen, S., & Jiang, S. (2003). Orientation of adsorbed antibodies on charged surfaces by computer simulation based on a united-residue model. Langmuir, 19, 3472–3478. DOI: 10.1021/la026871z. http://dx.doi.org/10.1021/la026871z10.1021/la026871zSuche in Google Scholar

Published Online: 2012-4-5
Published in Print: 2012-5-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0147-1/html
Button zum nach oben scrollen