Startseite Ultrathin functional films of titanium(IV) oxide
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Ultrathin functional films of titanium(IV) oxide

  • Petr Kluson EMAIL logo , Stepan Kment , Magdalena Morozova , Pavel Dytrych , Stanislav Hejda , Morwenna Slater , Zdenek Hubicka und Josef Krysa
Veröffentlicht/Copyright: 5. April 2012
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Chemistry and physics of thin semiconducting layers of various types are subjects of intense research. Especially when nanotechnology methods such as self-assembly are involved, amazing structural and/or functional properties may appear. Also modern physical methods using variously organized plasma arrangements are able to produce uniform structures with distinctive functionality. In this review, based virtually on our own work, discussions on the preparation, structure, morphology, and function of titanium(IV) oxide nanoscopic thin films are presented. It was shown that structurally and functionally similar titanium(IV) oxide films can be prepared via completely different preparation techniques. Function tests were arranged as “primary”, covering the assessment of the light induced charge separation efficiency, and “secondary”, based on photocatalytic surface oxidations.

[1] Alauzun, J., Mehdi, A., Reyé, C., & Corriu, R. J. P. (2005). Hydrophilic conditions: a new way for self-assembly of hybrid silica containing long alkylene chains. Journal of Materials Chemistry, 15, 841–843. DOI: 10.1039/b416157b. http://dx.doi.org/10.1039/b416157b10.1039/B416157BSuche in Google Scholar

[2] Amano, F., Yasumoto, T., Mahaney, O. O. P., Uchida, S., Shibayama, T., Terada, Y., & Ohtani, B. (2010). Highly active titania photocatalyst particles of controlled crystal phase, size, and polyhedral shapes. Topics in Catalysis, 53, 455–461. DOI: 10.1007/s11244-010-9472-1. http://dx.doi.org/10.1007/s11244-010-9472-110.1007/s11244-010-9472-1Suche in Google Scholar

[3] Baránková, H., & Bárdoš, L. (2000). Fused hollow cathode cold atmospheric plasma. Applied Physics Letters, 76, 285–290. DOI: 10.1063/1.125723. http://dx.doi.org/10.1063/1.12572310.1063/1.125723Suche in Google Scholar

[4] Bartkova, H., Kluson, P., Bartek, L., Drobek, M., Cajthaml, T., & Krysa, J. (2007). Photoelectrochemical and photocatalytic properties of titanium (IV) oxide nanoparticulate layers. Thin Solid Films, 515, 8455–8460. DOI: 10.1016/j.tsf.2007.03.121. http://dx.doi.org/10.1016/j.tsf.2007.03.12110.1016/j.tsf.2007.03.121Suche in Google Scholar

[5] Bernardini, C., Cappelletti, G., Dozzi, M. V., & Selli, E. (2010). Photocatalytic degradation of organic molecules in water: Photoactivity and reaction paths in relation to TiO2 particles features. Journal of Photochemistry and Photobiology A: Chemistry, 211, 185–192. DOI: 10.1016/j.jphotochem.2010.03.006. http://dx.doi.org/10.1016/j.jphotochem.2010.03.00610.1016/j.jphotochem.2010.03.006Suche in Google Scholar

[6] Bezděková, K., Vesely, M., & Lapčík, L. (1999). Contribution to the study of quantum efficiency of photocatalytic reaction of 2,6-dichloroindophenol. Chemical Papers, 53, 149–154. Suche in Google Scholar

[7] Bosc, F., Ayral, A., Keller, N., & Keller, V. (2008). Mesostructured anatase TiO2 for visible light and UV photocatalysis with confinement effect and semiconductor coupling. Journal of Solar Energy and Engineering, 130, 1–5. DOI: 10.1115/1.2969803. 10.1115/1.2969803Suche in Google Scholar

[8] Cheng, J. Y., Mayes, A. M., & Ross, C. A. (2004). Nanostructure engineering by templated self-assembly of block copolymers. Nature Materials, 3, 823–828. DOI: 10.1038/nmat1211. http://dx.doi.org/10.1038/nmat121110.1038/nmat1211Suche in Google Scholar

[9] Chichina, M., Hubicka, Z., Churpita, O., & Tichy, M. (2005). Measurement of the parameters of atmospheric-pressure barrier-torch discharge. Plasma Processes and Polymers, 2, 501–506. DOI: 10.1002/ppap.200500017. http://dx.doi.org/10.1002/ppap.20050001710.1002/ppap.200500017Suche in Google Scholar

[10] Churpita, A., Hubička, Z., Cada, M., Chvostová, D., Soukup, L., Jastrabik, L., & Ptček, P. (2003). Deposition of InxOy and SnOx thin films on polymer substrate by means of atmospheric barrier-torch discharge. Surface and Coatings Technology, 174–175, 1059–1063. DOI: 10.1016/s0257-8972(03)00556-5. http://dx.doi.org/10.1016/S0257-8972(03)00556-510.1016/S0257-8972(03)00556-5Suche in Google Scholar

[11] Das, S. K., Bhunia, M. K., & Bhaumik, A. (2010). Selfassembled TiO2 nanoparticles: mesoporosity, optical and catalytic properties. Dalton Transactions, 39, 4382–4390. DOI: 10.1039/c000317d. http://dx.doi.org/10.1039/c000317d10.1039/c000317dSuche in Google Scholar PubMed

[12] Deiana, C., Fois, E., Coluccia, S., & Martra, G. (2010). Surface structure of TiO2 P25 nanoparticles: Infrared study of hydroxy groups on coordinative defect sites. Journal of Physical Chemistry C, 114, 21531–21538. DOI: 10.1021/jp107671k. http://dx.doi.org/10.1021/jp107671k10.1021/jp107671kSuche in Google Scholar

[13] Di Fonzo, F., Casari, C. S., Russo, V., Brunella, M. F., Li Bassi, A., & Bottani, C. E. (2009). Hierarchically organized nanostructured TiO2 for photocatalysis applications. Nanotechnology, 20, 015604. DOI: 10.1088/0957-4484/20/1/015604. http://dx.doi.org/10.1088/0957-4484/20/1/01560410.1088/0957-4484/20/1/015604Suche in Google Scholar PubMed

[14] Duncan, W. R., & Prezhdo, O. V. (2007). Theoretical studies of photoinduced electron transfer in dye-sensitized TiO2. Annual Review on Physical Chemistry, 58, 143–184. DOI: 10.1146/annurev.physchem.58.052306.144054. http://dx.doi.org/10.1146/annurev.physchem.58.052306.14405410.1146/annurev.physchem.58.052306.144054Suche in Google Scholar PubMed

[15] Emeline, A. V., Ryabchuk, V. K., & Serpone, N. (2005). Dogmas and misconceptions in heterogeneous photocatalysis. some enlightened reflections. Journal of Physical Chemistry B, 109, 18515–18521. DOI: 10.1021/jp0523367. http://dx.doi.org/10.1021/jp052336710.1021/jp0523367Suche in Google Scholar PubMed

[16] Herrmann, J. M. (2010a). Photocatalysis fundamentals revisited to avoid several misconceptions. Applied Catalysis B, 99, 461–468. DOI: 10.1016/j.apcatb.2010.05.012. http://dx.doi.org/10.1016/j.apcatb.2010.05.01210.1016/j.apcatb.2010.05.012Suche in Google Scholar

[17] Herrmann, J. M. (2010b). Fundamentals and misconceptions in photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 216, 85–93. DOI: 10.1016/j.jphotochem.2010.05.015. http://dx.doi.org/10.1016/j.jphotochem.2010.05.01510.1016/j.jphotochem.2010.05.015Suche in Google Scholar

[18] Hirakawa, T., Daimon, T., Kitazawa, M., Ohguri, N., Koga, C., Negishi, N., Matsuzawa, S., & Nosaka, Y. (2007). An approach to estimating photocatalytic activity of TiO2 suspension by monitoring dissolved oxygen and superoxide ion on decomposing organic compounds. Journal of Photochemistry and Photobiology A: Chemistry, 190, 58–68. DOI: 10.1016/j.jphotochem.2007.03.012. http://dx.doi.org/10.1016/j.jphotochem.2007.03.01210.1016/j.jphotochem.2007.03.012Suche in Google Scholar

[19] Hofmann, S., Ducati, C., & Robertson, J. (2002). Lowtemperature self-assembly of novel encapsulated compound nanowires. Advanced Materials, 14, 1821–1824. DOI: 10.1002/adma.200290009. http://dx.doi.org/10.1002/adma.20029000910.1002/adma.200290009Suche in Google Scholar

[20] Hsiao, J. C., & Fong, K. (2004). Commentary making big money from small technology. Nature, 428, 218–220. DOI: 10.1038/428218a. http://dx.doi.org/10.1038/428218a10.1038/428218aSuche in Google Scholar PubMed

[21] Hueso, L., & Mathur, N. (2004). Nanotechnology: Dreams of a hollow future. Nature, 427, 301–304. DOI: 10.1038/427301a. http://dx.doi.org/10.1038/427301a10.1038/427301aSuche in Google Scholar PubMed

[22] Ikeda, S., Sugiyama, N., Murakami, S., Kominami, H., Kera, Y., Noguchi, H., Uosaki, K., Torimoto, T., & Ohtani, B. (2003). Quantitative analysis of defective sites in titanium(IV) oxide photocatalyst powders. Physical Chemistry Chemical Physics, 5, 778–783. DOI: 10.1039/b206594k. http://dx.doi.org/10.1039/b206594k10.1039/b206594kSuche in Google Scholar

[23] Ismail, A. A., Kandiel, T. A., & Bahnemann, D. W. (2010). Novel (and better?) titania-based photocatalysts: Brookite nanorods and mesoporous structures. Journal of Photochemistry and Photobiology A: Chemistry, 216, 183–193. DOI: 10.1016/j.jphotochem.2010.05.016. http://dx.doi.org/10.1016/j.jphotochem.2010.05.01610.1016/j.jphotochem.2010.05.016Suche in Google Scholar

[24] Jarandehei, A., Golpayegani, M. K., & De Visscher, A. (2008). Kinetic modeling of photocatalytic degradation reactions: Effect of charge trapping. Applied Catalysis B: Environmental, 84, 65–74. DOI: 10.1016/j.apcatb.2008.03.006. http://dx.doi.org/10.1016/j.apcatb.2008.03.00610.1016/j.apcatb.2008.03.006Suche in Google Scholar

[25] Jun, Y. W., Seo, J. W., Oh, S. J., & Cheon, J. (2005). Recent advances in the shape control of inorganic nano-building blocks. Coordination Chemistry Review, 249, 1766–1775. DOI: 10.1016/j.ccr.2004.12.008. http://dx.doi.org/10.1016/j.ccr.2004.12.00810.1016/j.ccr.2004.12.008Suche in Google Scholar

[26] Kanazawa, S., Kogoma, M., Moriwaki, T., & Okazaki, S. (1988). Stable glow plasma at atmospheric pressure. Journal of Physics D: Applied Physics, 21, 838–840. DOI: 10.1088/0022-3727/21/5/028. http://dx.doi.org/10.1088/0022-3727/21/5/02810.1088/0022-3727/21/5/028Suche in Google Scholar

[27] Kandiel, T. A., Dillert, R., Feldhoff, A., & Bahnemann, D. W. (2010). Direct synthesis of photocatalytically active rutile TiO2 nanorods partly decorated with anatase nanoparticles. Journal of Physical Chemistry C, 114, 4909–4915. DOI: 10.1021/jp912008k. http://dx.doi.org/10.1021/jp912008k10.1021/jp912008kSuche in Google Scholar

[28] Kang, X., & Chen, S. (2010). Photocatalytic reduction of methylene blue by TiO2 nanotube arrays: effects of TiO2 crystalline phase. Journal of Materials Science, 45, 2696–2702. DOI: 10.1007/s10853-010-4254-5. http://dx.doi.org/10.1007/s10853-010-4254-510.1007/s10853-010-4254-5Suche in Google Scholar

[29] Kapicka, V., Sícha, M., Klíma, M., Hubicka, Z., Tous, J., Brabec, A., Slavícek, P., Behnke, J. F., Tichy, M., & Vaculik, R. (1999). The high pressure torch discharge plasma source. Plasma Sources Science and Technology, 8, 15–21. DOI: 10.1088/0963-0252/8/1/002. http://dx.doi.org/10.1088/0963-0252/8/1/00210.1088/0963-0252/8/1/002Suche in Google Scholar

[30] Kavan, L. (2002). Nanocarbons made by soft chemistry. Molecular Crystals and Liquid Crystals, 386, 167–172. DOI: 10.1080/713738816. 10.1080/713738816Suche in Google Scholar

[31] Kavan, L., Grätzel, M., Gilbert, S. E., Klemenz, C., & Scheel, H. J. (1996). Electrochemical and photoelectrochemical investigation of single-crystal anatase. Journal of the American Chemical Society, 118, 6716–6723. DOI: 10.1021/ja954172l. http://dx.doi.org/10.1021/ja954172l10.1021/ja954172lSuche in Google Scholar

[32] Kavan, L., Rathouský, J., Grätzel, M., Shklover, V., & Zukal, A. (2000). Surfactant-templated TiO2 (anatase): Character istic features of lithium insertion electrochemistry in organized nanostructures. Journal of Physical Chemistry B, 104, 12012–12020. DOI: 10.1021/jp003609v. http://dx.doi.org/10.1021/jp003609v10.1021/jp003609vSuche in Google Scholar

[33] Kawi, S., & Lai, M. W. (1998). More economical synthesis of mesoporous MCM-41. Chemtech, 28, 26–30. Suche in Google Scholar

[34] Kluson, P., Kacer, P., Cajthaml, T., & Kalaji, M. (2003). Titania thin films and supported nanostructured membranes prepared by the surfactant mediated sol-gel method. Chemical and Biochemical Engineering Quarterly, 17, 183–190. Suche in Google Scholar

[35] Kluson, P., Kacer, P., Cajthaml, T., & Kalaji, M. (2011). Preparation of titania mesoporous materialsusing a surfactantmediated sol-gel method. Journal of Materials Chemistry, 11, 644–651. DOI: 10.1039/b004760k. http://dx.doi.org/10.1039/b004760k10.1039/b004760kSuche in Google Scholar

[36] Kluson, P., Luskova, H., Cajthaml, T., & Solcova, O. (2006). Non thermal preparation of photoactive titanium (IV) oxide thin layers. Thin Solid Films, 495, 18–23. DOI: 10.1016/j.tsf.2005.08.275. http://dx.doi.org/10.1016/j.tsf.2005.08.27510.1016/j.tsf.2005.08.275Suche in Google Scholar

[37] Kluson, P., Luskova, H., Cerveny, L., & Cajthaml, T. (2005a). “Self activation” properties of the nanophase photocatalytic titania precursors. Reaction Kinetics and Catalysis Letters, 86, 281–289. DOI: 10.1007/s11144-005-0323-1. http://dx.doi.org/10.1007/s11144-005-0323-110.1007/s11144-005-0323-1Suche in Google Scholar

[38] Kluson, P., Luskova, H., Cerveny, L., Klisakova, J., & Cajthaml, T. (2005b). Partial photocatalytic oxidation of cyclopentene over titanium(IV) oxide. Journal of Molecular Catalysis A: Chemical, 242, 62–67. DOI: 10.1016/j.molcata.2005.07.024. http://dx.doi.org/10.1016/j.molcata.2005.07.02410.1016/j.molcata.2005.07.024Suche in Google Scholar

[39] Kluson, P., Luskova, H., Solcova, O., Matejova, L., & Cajthaml, T., (2007). Lamellar micelles-mediated synthesis of nanoscale thick sheets of titania. Materials Letters, 61, 2931–2934. DOI: 10.1016/j.matlet.2006.10.041. http://dx.doi.org/10.1016/j.matlet.2006.10.04110.1016/j.matlet.2006.10.041Suche in Google Scholar

[40] Klisáková, J., Klusoň, P., & Červený, L. (2003). Photocatalytic oxidation of cyclohexene on titanium(IV) oxide. Collection of Czechoslovak Chemical Communications, 68, 1985–1997. DOI: 10.1135/cccc20031985. http://dx.doi.org/10.1135/cccc2003198510.1135/cccc20031985Suche in Google Scholar

[41] Kment, S., Hubicka, Z., Kmentova, H., Kluson, P., Krysa, J., Gregora, I., Morozova, M., Cada, M., Petras, D., Dytrych, P., Slater, M., & Jastrabik, L. (2011). Photoelectrochemical properties of hierarchical nanocomposite structure: Carbon nanofibers/TiO2/ZnO thin films. Catalysis Today, 161, 8–14. DOI: 10.1016/j.cattod.2010.10.001. http://dx.doi.org/10.1016/j.cattod.2010.10.00110.1016/j.cattod.2010.10.001Suche in Google Scholar

[42] Kment, S., Kluson, P., Bartkova, H., Krysa, J., Churpita, O., Cada, M., Virostko, P., Kohout, M., & Hubicka, Z. (2008). Advanced methods for titanium (IV) oxide thin functional coatings. Surface and Coatings Technology, 202, 2379–2383. DOI: 10.1016/j.surfcoat.2007.08.009. http://dx.doi.org/10.1016/j.surfcoat.2007.08.00910.1016/j.surfcoat.2007.08.009Suche in Google Scholar

[43] Kment, S., Kluson, P., Drobek, M., Kuzel, R., Gregora, I., Kohout M., & Hubicka, Z. (2009a). Preparation of thin phthalocyanine layers and their structural and absorption properties. Thin Solid Films, 517, 5274–5280. DOI: 10.1016/j.tsf.2009.03.067. http://dx.doi.org/10.1016/j.tsf.2009.03.06710.1016/j.tsf.2009.03.067Suche in Google Scholar

[44] Kment, S., Kluson, P., Hubicka, Z., Krysa, J., Cada, M., Gregora, I., Deyneka, A., Remes, Z., Zabova, H., & Jastrabik, L. (2010a). Double hollow cathode plasma jet-low temperature method for TiO2−x Nx photoresponding films. Electrochimica Acta, 55, 1548–1556. DOI: 10.1016/j.electacta.2009.10.017. http://dx.doi.org/10.1016/j.electacta.2009.10.01710.1016/j.electacta.2009.10.017Suche in Google Scholar

[45] Kment, S., Kluson, P., Zabova, H., Churpita, A., Chichina, M., Cada, M., Gregora, I., Krysa, J., & Hubicka, Z. (2009b). Atmospheric pressure barrier torch discharge and its optimization for flexible deposition of TiO2 thin coatings on various surfaces. Surface and Coatings Technology, 204, 667–675. DOI: 10.1016/j.surfcoat.2009.09.007. http://dx.doi.org/10.1016/j.surfcoat.2009.09.00710.1016/j.surfcoat.2009.09.007Suche in Google Scholar

[46] Kment, S., Kmentova, H., Kluson, P., Krysa, J., Hubicka, Z., Cirkva, V., Gregora, I., Solcova, O., & Jastrabik, L. (2010b). Notes on the photo-induced characteristics of transition metal-doped and undoped titanium dioxide thin films. Journal of Colloid Interface Science, 348, 198–205. DOI: 10.1016/j.jcis.2010.04.002. http://dx.doi.org/10.1016/j.jcis.2010.04.00210.1016/j.jcis.2010.04.002Suche in Google Scholar PubMed

[47] Kočá, L., & Lacny, Z. (2008). Photocatalytic reduction of CO2 over TiO2 based catalyst. Chemical Papers, 62, 1–9. DOI: 10.2478/s11696-007-0072-x. http://dx.doi.org/10.2478/s11696-007-0072-x10.2478/s11696-007-0072-xSuche in Google Scholar

[48] Konrad, A., Herr, U., Tidecks, R., Kummer, F., & Samwer, K. (2001). Luminescence of bulk and nanocristalline cubic yttria. Journal of Applied Physics, 90, 3516–3523. DOI: 10.1002/adma.200500418. http://dx.doi.org/10.1063/1.138802210.1002/adma.200500418Suche in Google Scholar

[49] Likodimos, V., Dionysiou, D. D., & Falaras, P. (2010). Clean water: Water detoxification using innovative photocatalysts. Reviews in Environmental Science and Biotechnology, 9, 87–94. DOI: 10.1007/s11157-010-9201-z. http://dx.doi.org/10.1007/s11157-010-9201-z10.1007/s11157-010-9201-zSuche in Google Scholar

[50] Li Puma, G., Salvadó-Estivill, I., Obee, T. N., & Hay, S. O. (2009). Kinetics rate model of the photocatalytic oxidation of trichloroethylene in air over TiO2 thin films. Separation and Purification Technology, 67, 226–232. DOI: 10.1016/j.seppur.2009.03.011. http://dx.doi.org/10.1016/j.seppur.2009.03.01110.1016/j.seppur.2009.03.011Suche in Google Scholar

[51] Malato, S., Fernández-Ibáñez, P., Maldonado, M. I., Blanco, J., & Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 147, 1–59. DOI: 10.1016/j.cattod.2009.06.018. http://dx.doi.org/10.1016/j.cattod.2009.06.01810.1016/j.cattod.2009.06.018Suche in Google Scholar

[52] Maruccio, G., Cingolani, R., & Rinaldi, R. (2004). Projecting the nanoworld: Concepts, results and perspectives of molecular electronics. Journal of Materials Chemistry, 14, 542–554. DOI: 10.1039/b311929g. http://dx.doi.org/10.1039/b311929g10.1039/b311929gSuche in Google Scholar

[53] Masson, S., Holliman, P., Kalaji, M., & Kluson, P. (2009). The production of nanoparticulate ceria using reverse micelle sol gel techniques. Journal of Materials Chemistry, 19, 3517–3522. DOI: 10.1039/b820098j. http://dx.doi.org/10.1039/b820098j10.1039/b820098jSuche in Google Scholar

[54] Matějová, L., Cajthaml, T., Matěj, Z., Benada, O., Klusoň, P., & Šolcová, O. (2010). Super/subcritical fluid extractions for preparation of the crystalline titania. The Journal of Supercritical Fluids, 52, 215–221. DOI: 10.1016/j.supflu.2009.12.008. http://dx.doi.org/10.1016/j.supflu.2009.12.00810.1016/j.supflu.2009.12.008Suche in Google Scholar

[55] Mathur, N., & Littlewood, P. (2004). Nanotechnology: The third way. Nature Materials, 3, 207–209. DOI: 10.1038/nmat1108. http://dx.doi.org/10.1038/nmat110810.1038/nmat1108Suche in Google Scholar PubMed

[56] Mehrotra, K., Yablonsky, G. S., & Ray, A. K. (2003). Kinetic studies of photocatalytic degradation in a TiO2 slurry system: Distinguishing working regimes and determining rate dependences. Industrial & Engineering Chemical Research, 42, 2273–2281. DOI: 10.1021/ie0209881. http://dx.doi.org/10.1021/ie020988110.1021/ie0209881Suche in Google Scholar

[57] Mills, A., Wang, J., & Ollis, D. F. (2006). Kinetics of liquid phase semiconductor photoassisted reactions: Supporting observations for a pseudo-steady-state model. Journal of Physical Chemistry B, 110, 14386–14390. DOI: 10.1021/jp062317c. http://dx.doi.org/10.1021/jp062317c10.1021/jp062317cSuche in Google Scholar PubMed

[58] Morozova, M., Kluson, P., Krysa, J., Gwenin, C., & Solcova, O. (2011). Oxalic acid sensors based on sol-gel nanostructured TiO2 films. Journal of Sol-Gel Science and Technology, 58, 175–181. DOI: 10.1007/s10971-010-2374-7. http://dx.doi.org/10.1007/s10971-010-2374-710.1007/s10971-010-2374-7Suche in Google Scholar

[59] Morozova, M., Kluson, P., Krysa, J., Zlamal, M., Solcova, O., Kment, S., & Steck, T. (2009). Role of the template molecular structure on the photo-electrochemical functionality of the sol-gel titania thin films. Journal of Sol-Gel Science and Technology, 52, 398–407. DOI: 10.1007/s10971-009-2035-x. http://dx.doi.org/10.1007/s10971-009-2035-x10.1007/s10971-009-2035-xSuche in Google Scholar

[60] Murzin, D. Y. (2006). Heterogeneous photocatalytic kinetics: beyond the adsorption / desorption equilibrium concept. Reaction Kinetics and Catalysis Letters, 89, 277–284. DOI: 10.1007/s11144-006-0138-8. http://dx.doi.org/10.1007/s11144-006-0138-810.1007/s11144-006-0138-8Suche in Google Scholar

[61] Novotna, P., Krysa, J., Maixner, J., Kluson, P., & Novak, P. (2010). Photocatalytic activity of sol-gel TiO2 thin films deposited on soda lime glass and soda lime glass precoated with a SiO2 layer. Surface and Coatings Technology, 204, 2570–2575. DOI: 10.1016/j.surfcoat.2010.01.043. http://dx.doi.org/10.1016/j.surfcoat.2010.01.04310.1016/j.surfcoat.2010.01.043Suche in Google Scholar

[62] Ohtani, B. (2008). Preparing articles on photocatalysis—beyond the illusions, misconceptions, and speculation. Chemical Letters, 37, 216–229. DOI: 10.1246/cl.2008.216. http://dx.doi.org/10.1246/cl.2008.21610.1246/cl.2008.216Suche in Google Scholar

[63] Ohtani, B., Prieto Mahaney, O. O., Amano, F., Murakami, N., & Abe, R. (2010). What are titania photocatalysts?—An exploratory correlation of photocatalytic activity with structural and physical properties. Journal of Advanced Oxidation Technologies, 13, 247–261. 10.1515/jaots-2010-0303Suche in Google Scholar

[64] Ohtani, B., Ogawa, Y., & Nishimoto, S. (1997). Photocatalytic activity of amorphous-anatase mixture of titanium(IV) oxide particles suspended in aqueous solutions. Journal of Physical Chemistry B, 101, 3746–3752. DOI: 10.1021/jp962702+. http://dx.doi.org/10.1021/jp962702+10.1021/jp962702+Suche in Google Scholar

[65] Ollis, D. F. (2005). Kinetic disguises in heterogeneous photocatalysis. Topics in Catalysis, 35, 217–223. DOI: 10.1007/s11244-005-3827-z. http://dx.doi.org/10.1007/s11244-005-3827-z10.1007/s11244-005-3827-zSuche in Google Scholar

[66] Park, K. M., Kim, S. Y., Heo, J., Whang, D., Sakamoto, S., Yamaguchi, K., & Kim, K. (2002). Designed self-assembly of molecular necklaces. Journal of the American Chemical Society, 124, 2140–2147. DOI: 10.1021/ja011654q. http://dx.doi.org/10.1021/ja011654q10.1021/ja011654qSuche in Google Scholar

[67] Pelentridou, K., Stathatos, E., Lianos, P., & Drakopoulos, V. (2010). A new precursor for the preparation of nanocrystalline TiO2 films and their photocatalytic properties. Journal of Nanoscience and Nanotechnology, 10, 6093–6098. DOI: 10.1166/jnn.2010.2604. http://dx.doi.org/10.1166/jnn.2010.260410.1166/jnn.2010.2604Suche in Google Scholar

[68] Rathousky, J., Slabová, M., Macounová, K., & Zukal, A. (2002). Organized mesoporous titanium dioxide—a powerful photocatalyst for the removal of water pollutants. Studies in Surface Science and Catalysis, 141, 599–606. DOI: 10.1016/s0167-2991(02)80595-x. http://dx.doi.org/10.1016/S0167-2991(02)80595-X10.1016/S0167-2991(02)80595-XSuche in Google Scholar

[69] Robel, I., Bunker, B. A., & Kamat, P. V. (2005). Single-walled carbon nanotube-CdS nanocomposites as light-harvesting assemblies: Photoinduced charge-transfer interactions. Advanced Materials, 17, 2458–2463. DOI: 10.1002/adma.200500418. http://dx.doi.org/10.1002/adma.20050041810.1002/adma.200500418Suche in Google Scholar

[70] Ryabchuk, V. (2004). Photophysical processes related to photoadsorption and photocatalysis on wide band gap solids: A review. International Journal of Photoenergy, 6, 95–113. DOI: 10.1155/s1110662x04000145. http://dx.doi.org/10.1155/S1110662X0400014510.1155/S1110662X04000145Suche in Google Scholar

[71] Sanchez, C., Arribart, H., & Guille, M. M. G. (2005a). Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nature Materials, 4, 277–288. DOI: 10.1038/nmat1339. http://dx.doi.org/10.1038/nmat133910.1038/nmat1339Suche in Google Scholar

[72] Sanchez, C., Julián, B., Belleville, P., & Popall, M. (2005b). Applications of hybrid organic-inorganic nanocomposites. Materials Chemistry, 15, 3559–3592. DOI: 10.1039/b509097k. http://dx.doi.org/10.1039/b509097k10.1039/b509097kSuche in Google Scholar

[73] Sarrade, S., Guizard, C., & Rios, G. M. (2003). New applications of supercritical fluids and supercritical fluids processes in separation. Separation and Purification Technology, 32, 57–63. DOI: 10.1016/s1383-5866(03)00054-6. http://dx.doi.org/10.1016/S1383-5866(03)00054-610.1016/S1383-5866(03)00054-6Suche in Google Scholar

[74] Satuf, M. L., Brandi, R. J., Cassano, A. E., & Alfano, O. M. (2005). Experimental method to evaluate the optical properties of aqueous titanium dioxide suspensions. Industrial & Engineering Chemistry Research, 44, 6643–6649. DOI: 10.1021/ie050365y. http://dx.doi.org/10.1021/ie050365y10.1021/ie050365ySuche in Google Scholar

[75] Shchukin, D. G., & Sukhorukov, G. B. (2004). Nanoparticle synthesis in engineered organic nanoscale reactors. Advanced Materials, 16, 671–682. DOI: 10.1002/adma.200306466. http://dx.doi.org/10.1002/adma.20030646610.1002/adma.200306466Suche in Google Scholar

[76] Shimizu, T., Masuda, M., & Minamikawa, H. (2005). Supramolecular nanotube architectures based on amphiphilic molecules. Chemical Reviews, 105, 1401–1444. DOI: 10.1021/ cr030072j. http://dx.doi.org/10.1021/cr030072j10.1021/cr030072jSuche in Google Scholar

[77] Serpone, N. (2007). Some remarks on so-called heterogeneous photocatalysis and on the mechanical application of the Langmuir-Hinshelwood kinetic model. Journal of Advanced Oxidation Technologies, 10, 111–115. 10.1515/jaots-2007-0119Suche in Google Scholar

[78] Serrano, B., & de Lasa, H. (1999). Photocatalytic degradation of water organic pollutants: pollutant reactivity and kinetic modeling. Chemical Engineering Science, 54, 3063–3069. DOI: 10.1016/s0009-2509(98)00478-3. http://dx.doi.org/10.1016/S0009-2509(98)00478-310.1016/S0009-2509(98)00478-3Suche in Google Scholar

[79] Soler-Illia, G. J. A. A., Sanchez, C., Lebeau, B., & Patarin, J. (2002). Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chemical Reviews, 102, 4093–4138. DOI: 10.1021/cr0200062. http://dx.doi.org/10.1021/cr020006210.1021/cr0200062Suche in Google Scholar

[80] Soukup, L., Hubička, Z., Churpita, A., Čada, M., Pokorny, M., Zemek, J., Jurek, K., & Jastrabík, L. (2003). Investigation of the atmospheric RF torch-barrier plasma jet for deposition of CeOx thin films. Surface and Coatings Technology, 169–170, 571–574. DOI: 10.1016/s0257-8972(03)00097-5. http://dx.doi.org/10.1016/S0257-8972(03)00097-510.1016/S0257-8972(03)00097-5Suche in Google Scholar

[81] Sun, C. H., Liu, L. M., Selloni, A., Lu, G. Q., & Smith, S. C. (2010). Titania-water interactions: a review of theoretical studies. Journal of Materials Chemistry, 20, 10319–10334. DOI: 10.1039/c0jm01491e. http://dx.doi.org/10.1039/c0jm01491e10.1039/c0jm01491eSuche in Google Scholar

[82] Sun, Y., Khang, D. Y., Hua, F., Hurley, K., Nuzzo, R. G., & Rogers, J. A. (2005). Photolithographic route to the fabrication of micro/nanowires of III-V semiconductors. Advanced Functional Materials, 15, 30–40. DOI: 10.1002/adfm.200400411. http://dx.doi.org/10.1002/adfm.20040041110.1002/adfm.200400411Suche in Google Scholar

[83] Tanaka, K., Padermpole, K., & Hisanaga, T. (2000). Photocatalytic degradation of commercial azo dyes. Water Research, 34, 327–333. DOI: 10.1016/s0043-1354(99)00093-7. http://dx.doi.org/10.1016/S0043-1354(99)00093-710.1016/S0043-1354(99)00093-7Suche in Google Scholar

[84] Torimoto, T., Aburakawa, Y., Kawahara, Y., Ikeda, S., & Ohtani, B. (2004). Light intensity dependence of the action spectra of photocatalytic reactions with anatase titanium( IV) oxide. Chemical Physics Letters, 392, 220–224. DOI: 10.1016/j.cplett.2004.05.077. http://dx.doi.org/10.1016/j.cplett.2004.05.07710.1016/j.cplett.2004.05.077Suche in Google Scholar

[85] Tseng, A. A., & Notargiacomo, A. (2005). Nanoscale fabrication by nonconventional approaches. Journal of Nanoscience and Nanotechnology, 5, 683–702. DOI: 10.1166/jnn.2005.116. http://dx.doi.org/10.1166/jnn.2005.11610.1166/jnn.2005.116Suche in Google Scholar PubMed

[86] Tseng, G. Y., & Ellenbogen, J. C. (2001). Towards nanocomputers. Science, 294, 1293–1294. DOI: 10.1126/science.1066920. http://dx.doi.org/10.1126/science.106692010.1126/science.1066920Suche in Google Scholar PubMed

[87] Waldner, G., & Krysa, J. (2005). Photocurrents and degradation rates on particulate TiO2 layers: Effect of layer thickness, concentration of oxidizable substance and illumination direction. Electrochimica Acta, 50, 4498–4504. DOI: 10.1016/j.electacta.2005.02.028. http://dx.doi.org/10.1016/j.electacta.2005.02.02810.1016/j.electacta.2005.02.028Suche in Google Scholar

[88] Wouters, D., & Schubert, U. S. (2004). Nanolithography and nanochemistry: Probe-related patterning techniques and chemical modification for nanometer-sized devices. Angewandte Chemie International Edition, 43, 2480–2495. DOI: 10.1002/anie.200300609. http://dx.doi.org/10.1002/anie.20030060910.1002/anie.200300609Suche in Google Scholar PubMed

[89] Xiong, B. T., Zhou, B. X., Li, L. H., Cai, J., Liu, Y. B., & Cai, W. M. (2008). Preparation of nanocrystalline anatase TiO2 using basic sol-gel method. Chemical Papers, 62, 382–387. DOI: 10.2478/s11696-008-0040-0. http://dx.doi.org/10.2478/s11696-008-0040-010.2478/s11696-008-0040-0Suche in Google Scholar

[90] Yoshida, T., Okada, T., Hamatani, H., & Kumaoka, H. (1992). Integrated fabrication process for solid oxide fuel cells using novel plasma spraying. Plasma Sources Science and Technology, 1, 195–204. DOI: 10.1088/0963-0252/1/3/009. http://dx.doi.org/10.1088/0963-0252/1/3/00910.1088/0963-0252/1/3/009Suche in Google Scholar

[91] Zhang, J., Yang, Y., Jiang, F., Xu, B., & Li, J. (2005). Controlled growth of semiconducting oxides hierarchical nanostructures. Journal of Solid State Chemistry, 178, 2804–2810. DOI: 10.1016/j.jssc.2005.06.015. http://dx.doi.org/10.1016/j.jssc.2005.06.01510.1016/j.jssc.2005.06.015Suche in Google Scholar

[92] Zhang, Y., Wang, D., Pang, S., Lin, Y., Jiang, T., & Xie, T. (2010). A study on photo-generated charges property in highly ordered TiO2 nanotube arrays. Applied Surface Science, 256, 7217–7221. DOI: 10.1016/j.apsusc.2010.05.054. http://dx.doi.org/10.1016/j.apsusc.2010.05.05410.1016/j.apsusc.2010.05.054Suche in Google Scholar

[93] Zukalová, M., Kalbáč, M., Kavan, L., Exnar, I., Haeger, A., & Graetzel, M. (2005). Electrochemical and gas-phase photocatalytic performance of nanostructured TiO2(B) prepared by novel synthetic route. Progress in Solid State Chemistry, 33, 253–261. DOI: 10.1016/j.progsolidstchem.2005.11.036. http://dx.doi.org/10.1016/j.progsolidstchem.2005.11.03610.1016/j.progsolidstchem.2005.11.036Suche in Google Scholar

Published Online: 2012-4-5
Published in Print: 2012-5-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0129-3/html
Button zum nach oben scrollen