Home Design of polyglycidol-containing microspheres for biomedical applications
Article
Licensed
Unlicensed Requires Authentication

Design of polyglycidol-containing microspheres for biomedical applications

  • Teresa Basinska EMAIL logo and Stanislaw Slomkowski
Published/Copyright: April 5, 2012
Become an author with De Gruyter Brill

Abstract

The paper presents a short review on the synthesis, characterisation and selected medical applications of poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) (P(S/PGL)) microspheres. The soap-free emulsion-polymerisation of styrene and α-tert-butoxy-ω-vinylbenzyl-polyglycidol macromonomer (PGL) in water yielded core-shell microspheres with a low particle-diameter dispersity (ratio of the weight average particle diameter and the number average particle diameter). The interfacial fraction of PGL units, estimated by XPS, was in the range of 0–42 mole % depending on the concentration of the macromonomer in the polymerisation feed. The studies of adsorption of model proteins showed that the surface fraction of adsorbed protein was significantly reduced when the PGL interfacial fraction was higher than 40 mole %. The P(S/PGL) particles with covalently immobilised proteins were used for the preparation of photonic crystal assemblies suitable for applications in optical biosensors and the medical diagnostic test for the detection of Helicobacter pylori antibodies in the blood serum.

[1] Aizawa, H., Kurosawa, S., Tanaka, M., Wakida, S., Talib, Z. A., Park, J. W., Yoshimoto, M., Muratsugu, M., Hilborn, J., Miyake, J., & Tanaka, H. (2001). Conventional diagnosis of Treponema pallidum in serum using latex piezoelectric immunoassay. Materials Science and Engineering C, 17, 127–132. DOI: 10.1016/s0928-4931(01)00320-4. http://dx.doi.org/10.1016/S0928-4931(01)00320-410.1016/S0928-4931(01)00320-4Search in Google Scholar

[2] Andersson, M., Hietala, S., Tenhu, H., & Maunu, S. L. (2006). Polystyrene latex particles coated with crosslinked poly(N-isopropylacrylamide). Colloid and Polymer Science, 284, 1255–1263. DOI: 10.1007/s00396-006-1470-2. http://dx.doi.org/10.1007/s00396-006-1470-210.1007/s00396-006-1470-2Search in Google Scholar PubMed PubMed Central

[3] Arshady, R. (Ed.) (1999). Microspheres, microcapsules & liposomes (Vol. 1, Preparation and chemical applications). London, UK: Citus Books. Search in Google Scholar

[4] Arshady, R., Margel, S., Pichot, C., & Delair, T. (1999). Functionalization of preformed microspheres. In R. Arshady (Ed.), Microspheres, microcapsules & liposomes (Vol. 1, Chapter 6, pp. 165–196). London, UK: Citus Books. Search in Google Scholar

[5] Basinska, T. (2001). Adsorption studies of human serum albumin, human γ-globulins, and human fibrinogen on P(S/PGL) microspheres. Journal of Biomaterials Science, Polymer Edition, 12, 1359–1371. DOI: 10.1163/156856202753419277. http://dx.doi.org/10.1163/15685620275341927710.1163/156856202753419277Search in Google Scholar PubMed

[6] Basinska, T., Kergoat, L., Mangeney, C., Chehimi, M. M., & Slomkowski, S. (2007). Poly(styrene/α-tertbutoxy-ω-vinylbenzyl-polyglycidol) microspheres for the preparation of novel photonic crystals. e-Polymers, 087. 10.1515/epoly.2007.7.1.1008Search in Google Scholar

[7] Basinska, T., Kowalczyk, D., Miksa, B., & Slomkowski, S. (1995). Interaction of proteins with polymeric latexes. Polymers for Advanced Technologies, 6, 526–533. DOI: 10.1002/pat.1995.220060714. http://dx.doi.org/10.1002/pat.1995.22006071410.1002/pat.1995.220060714Search in Google Scholar

[8] Basinska, T., & Slomkowski, S. (1995). Attachment of horseradish peroxidase (HRP) onto the poly(styrene/acrolein) latexes and onto their derivatives with amino groups on the surface; activity of immobilized enzyme. Colloid and Polymer Science, 273, 431–438. DOI: 10.1007/bf00656887. http://dx.doi.org/10.1007/BF0065688710.1007/BF00656887Search in Google Scholar

[9] Basinska, T., Slomkowski, S., & Delamar, M. (1993). Synthesis and characterization of polystyrene core/polyacrolein shell latexes. Journal of Bioactive and Compatible Polymers, 8, 205–219. DOI: 10.1177/088391159300800301. http://dx.doi.org/10.1177/08839115930080030110.1177/088391159300800301Search in Google Scholar

[10] Basinska, T., Slomkowski, S., Dworak, A., Panchev, I., & Chehimi, M. M. (2001). Synthesis and characterization of poly(styrene/α-t-butoxy-ω-vinylbenzyl-polyglycidol) microspheres. Colloid and Polymer Science, 279, 916–924. DOI: 10.1007/s003960100517. http://dx.doi.org/10.1007/s00396010051710.1007/s003960100517Search in Google Scholar

[11] Basinska, T., Slomkowski, S., Kazmierski, S., & Chehimi, M. M. (2008). Properties of poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) microspheres suspended in water. Effect of sodium chloride and temperature on particle diameters and electrophoretic mobility. Langmuir, 24, 8465–8472. DOI: 10.1021/la800836t. 10.1021/la800836tSearch in Google Scholar PubMed

[12] Basinska, T., Slomkowski, S., Kazmierski, S., Dworak, A., & Chehimi, M. M. (2004). Studies of the surface layer structure and properties of poly(styrene/α-t-butoxy-ω-polyglycidol) microspheres by carbon nuclear magnetic resonance, Xray photoelectron spectroscopy, and the adsorption of human serum albumin and γ-globulins. Journal of Polymer Science Part A: Polymer Chemistry, 42, 615–623. DOI: 10.1002/pola.10863. http://dx.doi.org/10.1002/pola.1086310.1002/pola.10863Search in Google Scholar

[13] Basinska, T., Wisniewska, M., & Chmiela, M. (2005). Principle of a new immunoassay based on electrophoretic mobility of poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) microspheres: Application for the determination of Helicobacter pylori IgG in blood serum. Macromolecular Bioscience, 5, 70–77. DOI: 10.1002/mabi.200400112. http://dx.doi.org/10.1002/mabi.20040011210.1002/mabi.200400112Search in Google Scholar

[14] Búcsi, A., Forcada, J., Gibanel, S., Héroguez, V., Fontanille, M., & Gnanou, Y. (1998). Monodisperse polystyrene latex particles functionalized by the macromonomer technique. Macromolecules, 31, 2087–2097. DOI: 10.1021/ma971434q. http://dx.doi.org/10.1021/ma971434q10.1021/ma971434qSearch in Google Scholar

[15] Caballero, M., Ruiz, R., Márquez de Prado, M., Seco, M., Borque, L., & Escanero, J. F. (1999). Development of microparticle-enhanced nephelometric immunoassay for quantitation of human lysozyme in pleural effusion and plasma. Journal of Clinical Laboratory Analysis, 13, 301–307. DOI: 10.1002/(SICI)1098-2825(1999)13:6〈301::AIDJCLA9t>3.0.CO;2-3. http://dx.doi.org/10.1002/(SICI)1098-2825(1999)13:6<301::AID-JCLA9>3.0.CO;2-310.1002/(SICI)1098-2825(1999)13:6<301::AID-JCLA9>3.0.CO;2-3Search in Google Scholar

[16] Daly, E., & Saunders, B. R. (2000). A study of the effect of electrolyte on the swelling and stability of poly(Nisopropylacrylamide) microgel dispersions. Langmuir, 16, 5546–5552. DOI: 10.1021/la991292o. http://dx.doi.org/10.1021/la991292o10.1021/la991292oSearch in Google Scholar

[17] DeSousaDelgado, A., Leonard, M., & Dellacherie, E. (2000). Surface modification of polystyrene nanoparticles using dextrans and dextran-POE copolymers: Polymer adsorption and colloidal characterization. Journal of Biomaterials Science, Polymer Edition, 11, 1395–1410. DOI: 10.1163/156856200744309. http://dx.doi.org/10.1163/15685620074430910.1163/156856200744309Search in Google Scholar

[18] Duracher, D., Elaïssari, A., Mallet, F., & Pichot, C. (2000). Adsorption of modified HIV-1 capsid p24 protein onto thermosensitive and cationic core-shell poly(styrene)-poly(N-isopropylacrylamide) particles. Langmuir, 16, 9002–9008. DOI: 10.1021/la0004045. http://dx.doi.org/10.1021/la000404510.1021/la0004045Search in Google Scholar

[19] Dworak, A., Panchev, I., Trzebicka, B., & Walach, W. (1998). Poly(α-t-butoxy-ω-styrylo-glycidol): a new reactive surfactant. Polymer Bulletin, 40, 461–468. DOI: 10.1007/s002890050277. http://dx.doi.org/10.1007/s00289005027710.1007/s002890050277Search in Google Scholar

[20] Fitton, A. O., Hill, J., Jane, D. E., & Millar, R. (1987). Synthesis of simple oxetanes carrying reactive 2-substituents. Synthesis, 1987, 1140–1142. DOI: 10.1055/s-1987-28203. http://dx.doi.org/10.1055/s-1987-2820310.1055/s-1987-28203Search in Google Scholar

[21] Gam-Derouich, S., Gosecka, M., Lepinay, S., Turmine, M., Carbonnier, B., Basinska, T., Slomkowski, S., Millot, M. C., Othmane, A., Ben Hassen-Chehimi, D., & Chehimi, M. M. (2011). Highly hydrophilic surfaces from polyglycidol grafts with dual antifouling and specific protein recognition properties. Langmuir, 27, 9285–9294. DOI: 10.1021/la200290k. 10.1021/la200290kSearch in Google Scholar

[22] Ganachaud, F., Sauzedde, F., Elaïssari, A., & Pichot, C. (1997). Emulsifier-free emulsion copolymerization of styrene with two different amino-containing cationic monomers. I. Kinetic studies. Journal of Applied Polymer Science, 65, 2315–2330. DOI: 10.1002/(SICI)1097-4628(19970919)65:12〈2315::AIDAPP6〉3.0.CO;2-C. Search in Google Scholar

[23] Gibanel, S., Heroguez, V., Gnanou, Y., Aramendia, E., Bucsi, A., & Forcada, J. (2001). Monodispersed polystyrene latex particles functionalized by the macromonomer technique. II. Application in immunodiagnosis. Polymers for Advanced Technologies, 12, 494–499. DOI: 10.1002/pat.108. http://dx.doi.org/10.1002/pat.10810.1002/pat.108Search in Google Scholar

[24] Gosecka, M., Griffete, N., Mangeney, C., Chehimi, M. M., Slomkowski, S., & Basinska, T. (2011). Preparation and optical properties of novel bioactive photonic crystals obtained from core-shell poly(styrene/α-tert-butoxy-ω-vinylbenzylpolyglycidol) microspheres. Colloid and Polymer Science, 289, 1511–1518. DOI: 10.1007/s00396-011-2447-3. http://dx.doi.org/10.1007/s00396-011-2447-310.1007/s00396-011-2447-3Search in Google Scholar

[25] Green, R. J., Davies, M. C., Roberts, C. J., & Tendler, S. J. B. (1998). A surface plasmon resonance study of albumin adsorption to PEO-PPO-PEO triblock copolymers. Journal of Biomedical Materials Research, 42, 165–171. DOI: 10.1002/(SICI)1097-4636(199811)42:2〈165::AIDJBM1〉3.0.CO;2-N. http://dx.doi.org/10.1002/(SICI)1097-4636(199811)42:2<165::AID-JBM1>3.0.CO;2-N10.1002/(SICI)1097-4636(199811)42:2<165::AID-JBM1>3.0.CO;2-NSearch in Google Scholar

[26] Griffete, N., Dybkowska, M., Glebocki, B., Basinska, T., Connan, C., Maître, A., Chehimi, M. M., Slomkowski, S., & Mangeney, C. (2010). Thermoresponsive colloidal crystals built from core-shell poly(styrene/α-tert-butoxy-ω-vinylbenzylpolyglycidol) microspheres. Langmuir, 26, 11550–11557. DOI: 10.1021/la100537v. http://dx.doi.org/10.1021/la100537v10.1021/la100537vSearch in Google Scholar

[27] Halacheva, S., Rangelov, S., & Tsvetanov, C. (2006). Poly(glycidol)-based analogues to pluronic block copolymers. Synthesis and aqueous solution properties. Macromolecules, 39, 6845–6852. DOI: 10.1021/ma061040b. 10.1021/ma061040bSearch in Google Scholar

[28] Hazot, P., Delair, T., Elaïssari, A., Chapel, J. P., & Pichot, C. (2002). Functionalization of poly(N-ethylmethacrylamide) thermosensitive particles by phenylboronic acid. Colloid and Polymer Science, 280, 637–646. DOI: 10.1007/s00396-002-0664-5. http://dx.doi.org/10.1007/s00396-002-0664-510.1007/s00396-002-0664-5Search in Google Scholar

[29] Heller, W., & Pangonis, W. J. (1957). Theoretical investigations on the light scattering of colloidal spheres. I. The specific turbidity. The Journal of Chemical Physics, 26, 498–506. DOI: 10.1063/1.1743332. http://dx.doi.org/10.1063/1.174333210.1063/1.1743332Search in Google Scholar

[30] Hong, J., Hong, C. K., & Shim, S. E. (2007). Synthesis of polystyrene microspheres by dispersion polymerization using poly(vinyl alcohol) as a steric stabilizer in aqueous alcohol media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 302, 225–233. DOI: 10.1016/j.colsurfa.2007.02.027. http://dx.doi.org/10.1016/j.colsurfa.2007.02.02710.1016/j.colsurfa.2007.02.027Search in Google Scholar

[31] Imaz, A., Miranda, J. I., Ramos, J., & Forcada, J. (2008). Evidences of a hydrolysis process in the synthesis of Nvinylcaprolactambased microgels. European Polymer Journal, 44, 4002–4011. DOI: 10.1016/j.eurpolymj.2008.09.027. http://dx.doi.org/10.1016/j.eurpolymj.2008.09.02710.1016/j.eurpolymj.2008.09.027Search in Google Scholar

[32] Jamróz-Piegza, M., Utrata-Wesołek, A., Trzebicka, B., & Dworak, A. (2006). Hydrophobic modification of high molar mass polyglycidol to thermosensitive polymers. European Polymer Journal, 42, 2497–2506. DOI: 10.1016/j.eurpolymj.2006.04.017. http://dx.doi.org/10.1016/j.eurpolymj.2006.04.01710.1016/j.eurpolymj.2006.04.017Search in Google Scholar

[33] Kawaguchi, H., Sato, Y., Okumura, A., & Kyo, M. (2005). Enhancement of sensitivity and selectivity in surface plasmon resonance detection of a DNA point mutation by polymeric microspheres. e-Polymers, 050. 10.1515/epoly.2005.5.1.521Search in Google Scholar

[34] Kim, J. H., & Ballauff, M. (1999). The volume transition in thermosensitive core-shell latex particles containing charged groups. Colloid and Polymer Science, 277, 1210–1214. DOI: 10.1007/s003960050512. http://dx.doi.org/10.1007/s00396005051210.1007/s003960050512Search in Google Scholar

[35] Lacroix-Desmazes, P., & Guyot, A. (1996). Reactive surfactants in heterophase polymerization. 2. Maleate based poly(ethylene oxide) macromonomers as steric stabilizer precursors in the dispersion polymerization of styrene in ethanol-water media. Macromolecules, 29, 4508–4515. DOI: 10.1021/ma951849g. http://dx.doi.org/10.1021/ma951849g10.1021/ma951849gSearch in Google Scholar

[36] López-León, T., Ortega-Vinuesa, J. L., Bastos-González, D., & Elaïssari, A. (2006). Cationic and anionic poly(N-isopropylacrylamide) based submicron gel particles: Electrokinetic properties and colloidal stability. The Journal of Physical Chemistry B, 110, 4629–4636. DOI: 10.1021/jp0540508. http://dx.doi.org/10.1021/jp054050810.1021/jp0540508Search in Google Scholar

[37] Lowry, O. H., Rosenbrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275. 10.1016/S0021-9258(19)52451-6Search in Google Scholar

[38] Lucas, L. J., Chesler, J. N., & Yoon, J. Y. (2007). Lab-on-achip immunoassay for multiple antibodies using microsphere light scattering and quantum dot emission. Biosensors and Bioelectronics, 23, 675–681. DOI: 10.1016/j.bios.2007.08.004. http://dx.doi.org/10.1016/j.bios.2007.08.00410.1016/j.bios.2007.08.004Search in Google Scholar PubMed

[39] Ma, Q., Wang, X., Li, Y., Shi, Y., & Su, X. (2007). Multicolor quantum dot-encoded microspheres for the detection of biomolecules. Talanta, 72, 1446–1452. DOI: 10.1016/j.talanta.52007.01.058. http://dx.doi.org/10.1016/j.talanta.2007.01.058Search in Google Scholar

[40] Miksa, B., Wilczynska, M., Cierniewski, C., Basinska, T., & Slomkowski, S. (1996). Composite poly(methyl methacrylatemethacrylic acid-2-hydroxyethyl methacrylate) latex for immunoassay. The case of plasminogen. Journal of Biomaterials Science, Polymer Edition, 7, 503–513. DOI: 10.1163/156856295x00562. http://dx.doi.org/10.1163/156856295X0056210.1163/156856295X00562Search in Google Scholar PubMed

[41] Okubo, M., Yamamoto, Y., & Kamei, S. (1989). XPS analysis (ESCA) of the surface composition of poly(styrene/2-hydroxyethyl methacrylate) microspheres produced by emulsifier-free emulsion polymerization. Colloid and Polymer Science, 267, 861–865. DOI: 10.1007/bf01410333. http://dx.doi.org/10.1007/BF0141033310.1007/BF01410333Search in Google Scholar

[42] Okumura, A., Sato, Y., Kyo, M., & Kawaguchi, H. (2005). Point mutation detection with the sandwich method employing hydrogel nanospheres by the surface plasmon resonance imaging technique. Analytical Biochemistry, 339, 328–337. DOI: 10.1016/j.ab.2005.01.017. http://dx.doi.org/10.1016/j.ab.2005.01.01710.1016/j.ab.2005.01.017Search in Google Scholar PubMed

[43] Omer-Mizrahi, M., & Margel, S. (2009). Synthesis and characterization of magnetic and non-magnetic core-shell polyepoxide micrometer-sized particles of narrow size distribution. Journal of Colloid and Interface Science, 329, 228–234. DOI: 10.1016/j.jcis.2008.09.047. http://dx.doi.org/10.1016/j.jcis.2008.09.04710.1016/j.jcis.2008.09.047Search in Google Scholar PubMed

[44] Ouali, L., Stoll, S., Pefferkorn, E., Elaissari, A., Lanet, V., Pichot, C., & Mandrand, B. (1995). Coagulation of antibodysensitized latexes in the presence of antigen. Polymers for Advanced Technologies, 6, 541–546. DOI: 10.1002/pat.1995.220060716. http://dx.doi.org/10.1002/pat.1995.22006071610.1002/pat.1995.220060716Search in Google Scholar

[45] Polpanich, D., Tangboriboonrat, P., Elaissari, A., & Udomsangpetch, R. (2007). Detection of malaria infection via latex agglutination assay. Analytical Chemistry, 79, 4690–4695. DOI: 10.1021/ac070502w. http://dx.doi.org/10.1021/ac070502w10.1021/ac070502wSearch in Google Scholar

[46] Revilla, J., Elaïssari, A., Pichot, C., & Gallot, B. (1995). Surface functionalization of polystyrene latex particles with a liposaccharide monomer. Polymers for Advanced Technologies, 6, 455–464. DOI: 10.1002/pat.1995.220060706. http://dx.doi.org/10.1002/pat.1995.22006070610.1002/pat.1995.220060706Search in Google Scholar

[47] Rosen, S. L. (1993). Fundamental principles of polymeric materials (2nd ed.). New York, NY, USA: Wiley-Interscience. Search in Google Scholar

[48] Sajjadi, S. (2007). Nanoparticle formation by monomer-starved semibatch emulsion polymerization. Langmuir, 23, 1018–1024. DOI: 10.1021/la062397b. http://dx.doi.org/10.1021/la062397b10.1021/la062397bSearch in Google Scholar

[49] Sanz Izquierdo, M. P., Martín-Molina, A., Ramos, J., Rus, A., Borque, L., Forcada, J., & Galisteo-González, F. (2004). Amino, chloromethyl and acetal-functionalized latex particles for immunoassays: a comparative study. Journal of Immunological Methods, 287, 159–167. DOI: 10.1016/j.jim.2004.01.020. http://dx.doi.org/10.1016/j.jim.2004.01.02010.1016/j.jim.2004.01.020Search in Google Scholar

[50] Slomkowski, S., Alemán, J. V., Gilbert, R. G., Hess, M., Horie, K., Jones, R. G., Kubisa, P., Meisel, I., Mormann, W., Penczek, S., & Stepto, R. F. T. (2011). Terminology of polymers and polymerization processes in dispersed systems (IUPAC Recommendations 2011). Pure and Applied Chemistry, 83, 2229–2259. DOI: 10.1351/pac-rec-10-06-03. http://dx.doi.org/10.1351/PAC-REC-10-06-0310.1351/PAC-REC-10-06-03Search in Google Scholar

[51] Slomkowski, S., & Basinska, T. (2010). Polymer nano- and microparticle based systems for medical diagnostics. Macromolecular Symposia, 295, 13–22. DOI: 10.1002/masy.200900084. http://dx.doi.org/10.1002/masy.20090008410.1002/masy.200900084Search in Google Scholar

[52] Slomkowski, S., Basinska, T., & Miksa, B. (2002). New types of microspheres and microsphere-related materials for medical diagnostics. Polymers for Advanced Technologies, 13, 906–918. DOI: 10.1002/pat.283. http://dx.doi.org/10.1002/pat.28310.1002/pat.283Search in Google Scholar

[53] Sofia, S. J., Premnath, V., & Merrill, E. W. (1998). Poly(ethylene oxide) grafted to silicon surfaces: Grafting density and protein adsorption. Macromolecules, 31, 5059–5070. DOI: 10.1021/ma971016l. http://dx.doi.org/10.1021/ma971016l10.1021/ma971016lSearch in Google Scholar

[54] Soini, J. T., Waris, M. E., & Hänninen, P. E. (2004). Detection methods of microsphere based single-step bioaffinity and in vitro diagnostics assays. Journal of Pharmaceutical and Biomedical Analysis, 34, 753–760. DOI: 10.1016/s0731-7085(03)00562-4. http://dx.doi.org/10.1016/S0731-7085(03)00562-410.1016/S0731-7085(03)00562-4Search in Google Scholar

[55] Takata, S., Shibayama, M., Sasabe, R., & Kawaguchi, H. (2003). Preparation and structure characterization of hairy nanoparticles consisting of hydrophobic core and thermosensitive hairs. Polymer, 44, 495–501. DOI: 10.1016/s0032-3861(02)00768-1. http://dx.doi.org/10.1016/S0032-3861(02)00768-110.1016/S0032-3861(02)00768-1Search in Google Scholar

[56] Texter, J. (2003). Polymer colloids in photonic materials. Comptes Rendus Chimie, 6, 1425–1433. DOI: 10.1016/j.crci.2003.07.014. http://dx.doi.org/10.1016/j.crci.2003.07.01410.1016/j.crci.2003.07.014Search in Google Scholar

[57] Zhou, G., Veron, L., Elaissari, A., Delair, T., & Pichot, C. (2004). A new route for the preparation of cyano-containing poly(N-isopropylacrylamide) microgel latex for specific immobilization of antibodies. Polymer International, 53, 603–608. DOI: 10.1002/pi.1439. http://dx.doi.org/10.1002/pi.143910.1002/pi.1439Search in Google Scholar

Published Online: 2012-4-5
Published in Print: 2012-5-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0122-2/html
Scroll to top button