Abstract
The development of new electrocatalysts with the aim of enhancing the rate of electrochemical reactions has been a long-term goal of electrochemists. In part, this is due to the great importance of electrocatalysts in energy generation and environmental concerns. In this review, various methods of the preparation of nanostructured electrocatalysts and their applications after attachment to the electrode surface are described. Diazonium chemistry has been extensively used for the preparation and attachment of nanostructured electrocatalysts and this review thus describes the recent developments and applications of this chemistry in electrocatalysis. The preparation of nanostructured electrocatalysts including grafted molecular films and metal nanoparticles physically adsorbed on electrode surfaces and those attached to the surface by molecular links using diazonium chemistry is reviewed. Two methods for the attachment of nanoparticles by simple physical adsorption and by electrochemical deposition on molecular films are described and the electrochemical response of nanostructured electrocatalysts for some of the most common electrochemical reactions is discussed.
[1] Allongue, P., Delamar, M., Desbat, B., Fagebaume, O., Hitmi, R., Pinson, J., & Savéant, J. M. (1997). Covalent modification of carbon surfaces by aryl radicals generated from the electrochemical reduction of diazonium salts. Journal of the American Chemical Society, 119, 201–207. DOI: 10.1021/ja963354s. http://dx.doi.org/10.1021/ja963354s10.1021/ja963354sSuche in Google Scholar
[2] Andrieux, C. P., Gonzalez, F., & Savéant, J. M. (1997). Derivatization of carbon surfaces by anodic oxidation of arylacetates. Electrochemical manipulation of the grafted films. Journal of the American Chemical Society, 119, 4292–4300. DOI: 10.1021/ja9636092. http://dx.doi.org/10.1021/ja963609210.1021/ja9636092Suche in Google Scholar
[3] Barbier, B., Pinson, J., Desarmot, G., & Sanchez, M. (1990). Electrochemical bonding of amines to carbon fiber surfaces toward improved carbon-epoxy composites. Journal of Electrochemical Society, 137, 1757–1764. DOI: 10.1149/1.2086794. http://dx.doi.org/10.1149/1.208679410.1149/1.2086794Suche in Google Scholar
[4] Baunach, T., Ivanova, V., Kolb, D. M., Boyen, H. G., Ziemann, P., Büttner, M., & Oelhafen, P. (2004). A new approach to the electrochemical metallization of organic monolayers: palladium deposition onto a 4,4’-dithiodipyridine self-assembled monolayer. Advanced Materials, 16, 2024–2028. DOI: 10.1002/adma.20040409. http://dx.doi.org/10.1002/adma.200400409Suche in Google Scholar
[5] Bayati, M., Abad, J. M., Bridges, C. A., Rosseinsky, M. J., & Schiffrin, D. J. (2008). Size control and electrocatalytic properties of chemically synthesized platinum nanoparticles grown on functionalised HOPG. Journal of Electroanalytical Chemistry, 623, 19–28. DOI: 10.1016/j.jelechem.2008.06.011. http://dx.doi.org/10.1016/j.jelechem.2008.06.01110.1016/j.jelechem.2008.06.011Suche in Google Scholar
[6] Bélanger, D., & Pinson, J. (2011). Electrografting: a powerful method for surface modification. Chemical Society Reviews, 40, 3995–4048. DOI: 10.1039/c0cs00149j. http://dx.doi.org/10.1039/c0cs00149j10.1039/c0cs00149jSuche in Google Scholar PubMed
[7] Bernard, M. C., Chaussé, A., Cabet-Deliry, E., Chehimi, M. M., Pinson, J., Podvorica, F., & Vautrin-Ul, C. (2003). Organic layers bonded to industrial, coinage, and noble metals through electrochemical reduction of aryldiazonium salts. Chemistry of Materials, 15, 3450–3462. DOI: 10.1021/cm034167d. http://dx.doi.org/10.1021/cm034167d10.1021/cm034167dSuche in Google Scholar
[8] Brown, K. R., Walter, D. G., & Natan, M. J. (2000). Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape. Chemistry of Materials, 12, 306–313. DOI: 10.1021/cm980065p. http://dx.doi.org/10.1021/cm980065p10.1021/cm980065pSuche in Google Scholar
[9] Brust, M., Walker, M., Bethell, D., Schiffrin, D. J., & Whyman, R. (1994). Synthesis of thiol-derivatised gold nanoparticles in a two phase liquid-liquid system. Chemical Communications, 7, 801–802. DOI: 10.1039/c39940000801. 10.1039/C39940000801Suche in Google Scholar
[10] Calabrese, G. S., Buchanan, R. M., & Wrighton, M. S. (1982). Electrochemical behaviour of a surface-confined naphtoquinone derivative. Electrochemical and photoelectrochemical reduction of oxygen to hydrogen peroxide at derivatized electrodes. Journal of the American Chemical Society, 104, 5786–5788. DOI: 10.1021/ja00385a040. http://dx.doi.org/10.1021/ja00385a04010.1021/ja00385a040Suche in Google Scholar
[11] Corgier, B. P., Marquette, C. A., & Blum, L. J. (2005). Diazonium-protein adducts for graphite electrode microarrays modification: Direct and addressed electrochemical immobilization. Journal of the American Chemical Society, 127, 18328–18332. DOI: 10.1021/ja056946w. http://dx.doi.org/10.1021/ja056946w10.1021/ja056946wSuche in Google Scholar PubMed
[12] Daniel, M. C., & Astruc, D. (2004). Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 104, 293–346. DOI: 10.1021/cr030698+. http://dx.doi.org/10.1021/cr030698+10.1021/cr030698+Suche in Google Scholar PubMed
[13] Delamar, M, Hitmi, R., Pinson, J., & Saveant, J. M. (1992). Covalent modification of carbon surfaces by grafting of functionalized aryl radicals produced from electrochemical reduction of diazonium salts. Journal of the American Chemical Society, 114, 5883–5884. DOI: 10.1021/ja00040a074. http://dx.doi.org/10.1021/ja00040a07410.1021/ja00040a074Suche in Google Scholar
[14] Downard, A. J., & Prince, M. J. (2001). Barrier properties of organic monolayers on glassy carbon electrodes. Langmuir, 17, 5581–5586. DOI: 10.1021/la010499q. http://dx.doi.org/10.1021/la010499q10.1021/la010499qSuche in Google Scholar
[15] Downard, A. J., Tan, E. S. Q., & Yu, S. S. C. (2006). Controlled assembly of gold nanoparticles on carbon surfaces. New Journal of Chemistry, 30, 1283–1288. DOI: 10.1039/b605219c. http://dx.doi.org/10.1039/b605219c10.1039/b605219cSuche in Google Scholar
[16] Frens, G. (1973). Controlled nucleation for the regulation of the particle size in monodisperse gold solutions. Nature. Physical Science, 241, 20–22. DOI: 10.1038/physci241020a0. 10.1038/physci241020a0Suche in Google Scholar
[17] Gam-Derouich, S., Mohouche-Chergui, S., Truong, S., Hassen-Chehimi, D. B., & Chehimi, M. M. (2011). Design of molecularly imprinted polymer grafts with embedded gold nanoparticles through the interfacial chemistry of aryl diazonium salts. Polymer, 52, 4463–4470. DOI: 10.1016/j.polymer.2011.08.007. http://dx.doi.org/10.1016/j.polymer.2011.08.00710.1016/j.polymer.2011.08.007Suche in Google Scholar
[18] Ghosh, D., & Chen, S.W. (2008a). Palladium nanoparticles passivated by metal-carbon covalent linkages. Journal of Material Chemistry, 18, 755–762. DOI: 10.1039/b715397j. http://dx.doi.org/10.1039/b715397j10.1039/b715397jSuche in Google Scholar
[19] Ghosh, D., & Chen, S. W. (2008b). Solid-state electronic conductivity of ruthenium nanoparticles passivated by metal-carbon covalent bonds. Chemical Physics Letters, 465, 115–119. DOI: 10.1016/j.cplett.2008.09.066. http://dx.doi.org/10.1016/j.cplett.2008.09.06610.1016/j.cplett.2008.09.066Suche in Google Scholar
[20] Ghosh, D., Pradhan, S., Chen, W., & Chen, S. W. (2008). Titanium nanoparticles stabilized by Ti-C covalent bonds. Chemistry of Materials, 20, 1248–1250. DOI: 10.1021/cm703423k. http://dx.doi.org/10.1021/cm703423k10.1021/cm703423kSuche in Google Scholar
[21] Grabar, K. C., Freeman, R. G., Hommer, M. B., & Natan, M. J. (1995). Preparation and characterization of Au colloid monolayers. Analytical Chemistry, 67, 735–743. DOI: 10.1021/ac00100a008. http://dx.doi.org/10.1021/ac00100a00810.1021/ac00100a008Suche in Google Scholar
[22] Guo, D. J., & Li, H. L. (2005a). Highly dispersed Ag nanoparticles on functional MWNT surfaces for methanol oxidation in alkaline solution. Carbon, 43, 1259–1264. DOI: 10.1016/j.carbon.2004.12.021. http://dx.doi.org/10.1016/j.carbon.2004.12.02110.1016/j.carbon.2004.12.021Suche in Google Scholar
[23] Guo, D. J., & Li, H. L. (2005b). High dispersion and electrocatalytic properties of platinum on functional multiwalled carbon nanotubes. Electroanalysis, 17, 869–872. DOI: 10.1002/elan.200403164. http://dx.doi.org/10.1002/elan.20040316410.1002/elan.200403164Suche in Google Scholar
[24] Harnisch, J. A., Pris, A. D., & Porter, M. D. (2001). Attachment of gold nanoparticles to glassy carbon electrodes via a mercaptobenzene film. Journal of the American Chemical Society, 123, 5829–5830. DOI: 10.1021/ja010564i. http://dx.doi.org/10.1021/ja010564i10.1021/ja010564iSuche in Google Scholar PubMed
[25] Harper, J. C., Polsky, R., Dirk, S. M., Wheeler, D. A., & Brozik, S. M. (2007). Electroaddressable selective functionalization of electrode arrays: Catalytic NADH detection using aryl diazonium modified gold electrodes. Electroanalysis, 19, 1268–1274. DOI: 10.1002/elan.200703867. http://dx.doi.org/10.1002/elan.20070386710.1002/elan.200703867Suche in Google Scholar
[26] Hu, G. Z., Ma, Y. G., Guo, Y., & Shao, S. J. (2008a). Electrocatalytic oxidation and simultaneous determination of uric acid and ascorbic acid on the gold nanoparticles-modified glassy carbon electrode. Electrochimica Acta, 53, 6610–6615. DOI: 10.1016/j.electacta.2008.04.054. http://dx.doi.org/10.1016/j.electacta.2008.04.05410.1016/j.electacta.2008.04.054Suche in Google Scholar
[27] Hu, G. Z., Zhang, D. P., Wu, W. L., & Yang, Z. S. (2008b). Selective determination of dopamine in the presence of high concentration of ascorbic acid using nano-Au self-assembly glassy carbon electrode. Colloids and Surfaces B: Biointerfaces, 62, 199–205. DOI: 10.1016/j.colsurfb.2007.10.001. http://dx.doi.org/10.1016/j.colsurfb.2007.10.00110.1016/j.colsurfb.2007.10.001Suche in Google Scholar PubMed
[28] Ingram, R. S., Hostetler, M. J., & Murray, R. W. (1997). Polyhetero-ω-functionalized alkanethiolate-stabilized gold cluster compounds. Journal of the American Chemical Society, 119, 9175–9178. DOI: 10.1021/ja971734n. http://dx.doi.org/10.1021/ja971734n10.1021/ja971734nSuche in Google Scholar
[29] Ivanova, V., Baunach, T., & Kolb, D. M. (2005). Metal deposition onto a thiol-covered gold surface: A new approach. Electrochimica Acta, 50, 4283–4288. DOI: 10.1016/j.electacta.2005.05.047. http://dx.doi.org/10.1016/j.electacta.2005.05.04710.1016/j.electacta.2005.05.047Suche in Google Scholar
[30] Jürmann, G., Schiffrin, D. J., & Tammeveski, K. (2007). The pH-dependence of oxygen reduction on quinone-modified glassy carbon electrodes. Electrochimica Acta, 53, 390–399. DOI: 10.1016/j.electacta.2007.03.053. http://dx.doi.org/10.1016/j.electacta.2007.03.05310.1016/j.electacta.2007.03.053Suche in Google Scholar
[31] Kannan, P., & Abraham John, S. (2009). Determination of nanomolar uric and ascorbic acids using enlarged gold nanoparticles modified electrode. Analytical Biochemistry, 386, 65–72. DOI: 10.1016/j.ab.2008.11.043. http://dx.doi.org/10.1016/j.ab.2008.11.04310.1016/j.ab.2008.11.043Suche in Google Scholar PubMed
[32] Kariuki, J. K., & McDermott, M. T. (1999). Nucleation and growth of functionalized aryl films on graphite electrodes. Langmuir, 15, 6534–6540. DOI: 10.1021/la990295y. http://dx.doi.org/10.1021/la990295y10.1021/la990295ySuche in Google Scholar
[33] Katz, E., Willner, I., & Wang, J. (2004). Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis, 16, 19–44. DOI: 10.1002/elan.200302930. http://dx.doi.org/10.1002/elan.20030293010.1002/elan.200302930Suche in Google Scholar
[34] Kullapere, M., Marandi, M., Matisen, L., Mirkhalaf, F., Carvalho, A. E., Maia, G., Sammelselg, V., & Tammeveski, K. (2011). Blocking properties of gold electrodes modified with 4-nitrophenyl and 4-decylphenyl group. Journal of Solid State Electrochemistry, in press. DOI: 10.1007/s10008-011-1381-0. 10.1007/s10008-011-1381-0Suche in Google Scholar
[35] Kullapere, M., Mirkhalaf, F., & Tammeveski, K. (2010). Electrochemical behaviour of glassy carbon electrodes modified with aryl groups. Electrochimica Acta, 56, 166–173. DOI: 10.1016/j.electacta.2010.08.104. http://dx.doi.org/10.1016/j.electacta.2010.08.10410.1016/j.electacta.2010.08.104Suche in Google Scholar
[36] Laurentius, L., Stoyanov, S. R., Gusarov, S., Kovalenko, A., Du, R., Lopinski, G. P., & McDermott, M. T. (2011). Diazomiumderived aryl films on gold nanoparticles: Evidence for a carbon-gold covalent bond. ACS Nano, 5, 4219–4227. DOI: 10/1021/nn201110r. http://dx.doi.org/10.1021/nn201110r10.1021/nn201110rSuche in Google Scholar PubMed
[37] Leite, E. R. (Ed.) (2009). Nanostructured materials for electrochemical energy production and storage. New York, NY, USA: Springer. DOI: 10.1007/978-0-387-49323-7. 10.1007/978-0-387-49323-7Suche in Google Scholar
[38] Lennox, R. B. (2001). Thiol-functionalized nanoparticles. In K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, & S. Mahajan (Eds.), Encyclopedia of materials: Science and technology (Vol. 10, pp. 9344–9348). Oxford, UK: Elsevier. DOI: 10.1016/b0-08-043152-6/01683-1. http://dx.doi.org/10.1016/B0-08-043152-6/01683-110.1016/B0-08-043152-6/01683-1Suche in Google Scholar
[39] Liu, G. Z., Böcking, T., & Gooding, J. J. (2007). Diazonium salts: Stable monolayers on gold electrodes for sensing applications. Journal of Electroanalytical Chemistry, 600, 335–344. DOI: 10.1016/j.elechem.2006.09.012. http://dx.doi.org/10.1016/j.jelechem.2006.09.012Suche in Google Scholar
[40] Liu, G. Z., Liu, J. Q., Böcking, T., Eggers, P. K., & Gooding, J. J. (2005). The modification of glassy carbon and gold electrodes with aryl diazonium salt: The impact of the electrode materials on the rate of heterogeneous electron transfer. Chemical Physics, 319, 136–146. DOI: 10.1016/j.chemphys.2005.03.033. http://dx.doi.org/10.1016/j.chemphys.2005.03.03310.1016/j.chemphys.2005.03.033Suche in Google Scholar
[41] Liu, G. Z., Luais, E., & Gooding, J. J. (2011). The fabrication of stable gold nanoparticle-modified interfaces for electrochemistry. Langmuir, 27, 4176–4183. DOI: 10.1021/la104373v. http://dx.doi.org/10.1021/la104373v10.1021/la104373vSuche in Google Scholar PubMed
[42] Liu, J. Y., Cheng, L., Liu, B. F., & Dong, S. J. (2000a). Covalent modification of a glassy carbon surface by 4-aminobenzoic acid and its application in fabrication of a polyoxometalates-consisting monolayer and multilayer film. Langmuir, 16, 7471–7476. DOI: 10.1021/la9913506. http://dx.doi.org/10.1021/la991350610.1021/la9913506Suche in Google Scholar
[43] Liu, S. Q., Tang, Z. Y., Wang, E. K., & Dong, S. J. (2000b). Electrocrystallized platinum nanoparticle on carbon substrate. Electrochemistry Communications, 2, 800–804. DOI: 10.1016/s1388-2481(00)00125-9. http://dx.doi.org/10.1016/S1388-2481(00)00125-910.1016/S1388-2481(00)00125-9Suche in Google Scholar
[44] Lin, T. H., & Hung, W. H. (2009). Electrochemical deposition of gold nanoparticles on a glassy carbon electrode modified with sulfanilic acid. Journal of the Electrochemical Society, 156(2), D45–D50. DOI: 10.1149/1.3033524. http://dx.doi.org/10.1149/1.303352410.1149/1.3033524Suche in Google Scholar
[45] Liz-Marzàn, L. M., & Kamat, P. V. (2003). Nanoscale materials. Dordrecht, The Netherlands: Kluwer Academic Publications. 10.1007/b101855Suche in Google Scholar
[46] Lou, Y. B., Maye, M. M., Han, L., Lou, J., & Zhong, C. J. (2001). Gold-platinum alloy nanoparticle assembly as catalyst for methanol electrooxidation. Chemical Communications, 5, 473–474. DOI: 10.1039/b008669j. http://dx.doi.org/10.1039/b008669j10.1039/b008669jSuche in Google Scholar
[47] Mahouche-Chergui, S., Gam-Derouich, S., Mangeney, C., & Chehimi, M. M. (2011). Aryl diazonium salts: a new class of coupling agents for bonding polymers, biomacromolecules and nanoparticles to surfaces. Chemical Society Reviews, 40, 4143–4166. DOI: 10.1039/c0cs00179a. http://dx.doi.org/10.1039/c0cs00179a10.1039/c0cs00179aSuche in Google Scholar PubMed
[48] Manolova, M., Ivanova, V., Kolb, D. M., Boyen, H. G., Ziemann, P., Büttner, M., Romanyuk, A., & Oelhafen, P. (2005). Metal deposition onto thiol-covered gold: Platinum on a 4-mercaptopyridine SAM. Surface Science, 590, 146–153. DOI: 10.1016/j.susc.2005.06.005. http://dx.doi.org/10.1016/j.susc.2005.06.00510.1016/j.susc.2005.06.005Suche in Google Scholar
[49] Manolova, M., Kayser, M., Kolb, D. M., Boyen, H. G., Ziemann, P., Mayer, D., & Wirth, A. (2007). Rhodium deposition onto a 4-mercaptopyridine SAM on Au(111). Electrochimica Acta, 52, 2740–2745. DOI: 10.1016/j.electacta.2006.08.038. http://dx.doi.org/10.1016/j.electacta.2006.08.03810.1016/j.electacta.2006.08.038Suche in Google Scholar
[50] Maye, M. M., Lou, Y. B., & Zhong, C. J. (2000). Core-shell gold nanoparticle assembly as novel electrocatalyst of CO oxidation. Langmuir, 16, 7520–7523. DOI: 10.1021/la000503i. http://dx.doi.org/10.1021/la000503i10.1021/la000503iSuche in Google Scholar
[51] McCreery, R. L. (2004). Molecular electronic junctions. Chemistry of Materials, 16, 4477–4496. DOI: 10.1021/cm049517q. http://dx.doi.org/10.1021/cm049517q10.1021/cm049517qSuche in Google Scholar
[52] Miles, D. T., & Murray, R. W. (2001). Redox and doublelayer charging of phenothiazine functionalized monolayer-protected clusters. Analytical Chemistry, 73, 921–929. DOI: 10.1021/ac0012647. http://dx.doi.org/10.1021/ac001264710.1021/ac0012647Suche in Google Scholar PubMed
[53] Mirkhalaf, F., Mason, T. J., Morgan, D. J., & Saez, V. (2011). Frequency effects on the surface coverage of nitrophenyl films ultrasonically grafted onto indium tin oxide. Langmuir, 27, 1853–1858. DOI: 10.1021/la104402z. http://dx.doi.org/10.1021/la104402z10.1021/la104402zSuche in Google Scholar PubMed
[54] Mirkhalaf, F., Paprotny, J., & Schiffrin, D. J. (2006). Synthesis of metal nanoparticles stabilized by metal-carbon bonds. Journal of the American Chemical Society, 128, 7400–7401. DOI: 10.1021/ja058687g. http://dx.doi.org/10.1021/ja058687g10.1021/ja058687gSuche in Google Scholar
[55] Mirkhalaf, F., & Schiffrin, D. J. (2010). Electrocatalytic oxygen reduction on functionalized gold nanoparticles incorporated in a hydrophobic environment. Langmuir, 26, 14995–15001. DOI: 10.1021/la1021565. http://dx.doi.org/10.1021/la102156510.1021/la1021565Suche in Google Scholar
[56] Mirkhalaf, F., Tammeveski, K., & Schiffrin, D. J. (2004). Substituent effects on the electrocatalytic reduction of oxygen on quinone-modified glassy carbon electrodes. Physical Chemistry Chemical Physics, 6, 1321–1327. DOI: 10.1039/b3159 63a. http://dx.doi.org/10.1039/b315963aSuche in Google Scholar
[57] Mirkhalaf, F., Tammeveski, K., & Schiffrin, D. J. (2009). Electrochemical reduction of oxygen on nanoparticulate gold electrodeposited on a molecular template. Physical Chemistry Chemical Physics, 11, 3463–3471. DOI: 10.1039/b818439a. http://dx.doi.org/10.1039/b818439a10.1039/b818439aSuche in Google Scholar
[58] Mirkin, C. A., Letsinger, R. L., Mucic, R. C., & Storhoff, J. J. (1996). A DNA based method for rationally assembling nanoparticles onto macroscopic materials. Nature, 382, 607–609. DOI: 10.1038/382607a0. http://dx.doi.org/10.1038/382607a010.1038/382607a0Suche in Google Scholar
[59] Murray, R. W. (2008). Nanoelectrochemistry: Metal nanoparticles, nanoelectrodes, and nanopores. Chemical Reviews, 108, 2688–2720. DOI: 10.1021/cr068077e. http://dx.doi.org/10.1021/cr068077e10.1021/cr068077eSuche in Google Scholar
[60] Noël, J. M., Zigah, D., Simonet, J., & Hapiot, P. (2010). Synthesis and immobilization of Ag° nanoparticles on diazonium modified electrodes: SECM and cyclic voltammetry study of the modified interfaces. Langmuir, 26, 7638–7643. DOI: 10.1021/la 904413h. http://dx.doi.org/10.1021/la904413hSuche in Google Scholar
[61] Oyama, M. (2010). Recent nanoarchitectures in metal nanoparticle-modified electrodes for electroanalysis. Analytical Sciences, 26, 1–12. DOI: 10.2116/analsci.26.1. http://dx.doi.org/10.2116/analsci.26.110.2116/analsci.26.1Suche in Google Scholar
[62] Polsky, R., Harper, J. C., Wheeler, D. A., Dirk, S. M., Arango, D. C., & Brozik, S. M. (2008). Electrically addressable diazonium-functionalized antibodies for multianalyte electrochemical sensor applications. Biosensors and Bioelectronics, 23, 757–764. DOI: 10.1016/j.bios.2007.08.013. http://dx.doi.org/10.1016/j.bios.2007.08.01310.1016/j.bios.2007.08.013Suche in Google Scholar
[63] Qu, D., & Uosaki, K. (2006). Electrochemical metal deposition on top of an organic monolayer. Journal of Physical Chemistry, B., 110, 17570–17577. DOI: 10.1021/jp0632135. http://dx.doi.org/10.1021/jp063213510.1021/jp0632135Suche in Google Scholar
[64] Raj, C. J., Abdelrahman, A. I., & Ohsaka, T. (2005). Gold nanoparticle-assisted electroreduction of oxygen. Electrochemistry Communications, 7, 888–893. DOI: 10.1016/j.elecom2005.06.005. http://dx.doi.org/10.1016/j.elecom.2005.06.005Suche in Google Scholar
[65] Raj, C. J., Okajima, T., & Ohsaka, T. (2003). Gold nanoparticle arrays for the voltammetric sensing of dopamine. Journal of Electroanalytical Chemistry, 543, 127–133. DOI: 10.1016/s0022-0728(02)01481-x. http://dx.doi.org/10.1016/S0022-0728(02)01481-X10.1016/S0022-0728(02)01481-XSuche in Google Scholar
[66] Rosi, L. N., & Mirkin, C. A.(2005). Nanostructures in biodiagnostics. Chemical Reviews, 105, 1547–1562. DOI: 10.1021/cr030067f. http://dx.doi.org/10.1021/cr030067f10.1021/cr030067fSuche in Google Scholar PubMed
[67] Sarapuu, A., Vaik, K., Schiffrin, D. J., & Tammeveski, K. (2003). Electrochemical reduction of oxygen on anthraquinone-modified glassy carbon electrodes in alkaline solution. Journal of Electroanalytical Chemistry, 541, 23–29. DOI: 10.1016/s0022-0728(02)01311-6. http://dx.doi.org/10.1016/S0022-0728(02)01311-610.1016/S0022-0728(02)01311-6Suche in Google Scholar
[68] Sides, C. R., & Martin, C. R. (2009). Deposition into templates. In P. Schmuki, & S. Virtanen (Eds.), Electrochemistry at the nanoscale (pp. 279–320). New York, NY, USA: Springer. DOI: 10.1007/978-0-387-73582-5. http://dx.doi.org/10.1007/978-0-387-73582-5_710.1007/978-0-387-73582-5Suche in Google Scholar
[69] Sivanesan, A., Kannan, P., & Abraham John, S. (2007). Electrocatalytic oxidation of ascorbic acid using a single layer of gold nanoparticles immobilized on 1,6-hexanedithiol modified gold electrode. Electrochimica Acta, 52, 8118–8124. DOI: 10.1016/j.electacta.2007.07.020. http://dx.doi.org/10.1016/j.electacta.2007.07.02010.1016/j.electacta.2007.07.020Suche in Google Scholar
[70] Stewart, M. P., Maya, F., Kosynkin, D. V., Dirk, S. M., Stapleton, J. J., McGuiness, C. L., Allara, D. L., & Tour, J. M. (2004). Direct covalent grafting of conjugated molecules onto Si, GaAs, and Pd surfaces from aryldiazonium salts. Journal of the American Chemical Society, 126, 370–378. DOI: 10.1021/ja0383120. http://dx.doi.org/10.1021/ja038312010.1021/ja0383120Suche in Google Scholar
[71] Stolarczyk, K., & Bilewicz, R. (2006). Electron transport through alkanethiolate films decorated with monolayer protected gold clusters. Electrochimica Acta, 51, 2358–2365. DOI: 10.1016/j.electacta.2005.03.091. http://dx.doi.org/10.1016/j.electacta.2005.03.09110.1016/j.electacta.2005.03.091Suche in Google Scholar
[72] Stolarczyk, K., Pałlys, B., & Bilewicz, R. (2004). Catalytic properties of 4-hydroxythiophenol protected gold nanoclusters supported on gold electrodes. Journal of Electroanalytical Chemistry, 564, 93–98. DOI: 10.1016/j.elechem.2003.09.031. http://dx.doi.org/10.1016/j.jelechem.2003.09.031Suche in Google Scholar
[73] Tammeveski, K., Kontturi, K., Nichols, R. J., Potter, R. J., & Schiffrin, D. J. (2001). Surface redox catalysis for O2 reduction on quinone-modified glassy carbon electrodes. Journal of Electroanalytical Chemistry, 515, 101–112. DOI: 10.1016/s0022-0728(01)00633-7. http://dx.doi.org/10.1016/S0022-0728(01)00633-710.1016/S0022-0728(01)00633-7Suche in Google Scholar
[74] Tang, Z. Y., Liu, S. Q., Dong, S. J., & Wang, E. K. (2001). Electrochemical synthesis of Ag nanoparticles on functional carbon surfaces. Journal of Electroanalytical Chemistry, 502, 146–151. DOI: 10.1016/s0022-0728(01)00344-8. http://dx.doi.org/10.1016/S0022-0728(01)00344-810.1016/S0022-0728(01)00344-8Suche in Google Scholar
[75] Templeton, A. C., Wuelfing, W. P., & Murray, R. W. (2000). Monolayer-protected cluster molecules. Accounts of Chemical Research, 33, 27–36. DOI: 10.1021/ar9602664. http://dx.doi.org/10.1021/ar960266410.1021/ar9602664Suche in Google Scholar PubMed
[76] Turkevich, J., Stevenson, P. C., & Hillier, J. (1953). The formation of colloidal gold. Journal of Physical Chemistry, 57, 670–673. DOI: 10.1021/j150508a015. http://dx.doi.org/10.1021/j150508a01510.1021/j150508a015Suche in Google Scholar
[77] Urchaga, P., Weissmann, M., Baranton, S., Girardeau, T., & Coutanceau, C. (2009). Improvement of the platinum nanoparticles-carbon substrate interaction by insertion of a thiophenol molecular bridge. Langmuir, 25, 6543–6550. DOI: 10.1021/la9000973. http://dx.doi.org/10.1021/la900097310.1021/la9000973Suche in Google Scholar PubMed
[78] Vaik, K., Sarapuu, A., Tammeveski, K., Mirkhalaf, F., & Schiffrin, D. J. (2004). Oxygen reduction on phenanthrene-quinone-modified glassy carbon electrodes in 0.1 M KOH. Journal of Electroanalytical Chemistry, 564, 159–166. DOI: 10.1016/j.elechem2003.08.024. http://dx.doi.org/10.1016/j.jelechem.2003.08.024Suche in Google Scholar
[79] Vayenas, C. G., Beblis, S., Pliangos, C., Brosda, S., & Tsiplakides, D. (2002). Electrochemical activation of catalysis. New York, NY, USA: Kluwer Academic Publishers. Suche in Google Scholar
[80] Vil`a, N., Van Brussel, M., DłAmours, M., Marwan, J., Buess-Herman, C., & Bélanger, D. (2007). Metallic and bimetallic Cu/Pt species supported on carbon surfaces by means of substituted phenyl groups. Journal of Electroanalytical Chemistry, 609, 85–93. DOI: 10.1016/j.jelechem.2007.06.026. http://dx.doi.org/10.1016/j.jelechem.2007.06.02610.1016/j.jelechem.2007.06.026Suche in Google Scholar
[81] Wang, L., Bai, J. Y., Huang, P. F., Wang, H. J., Zhang, L. Y., & Zhao, Y. Q. (2006a). Self-assembly of gold nanoparticles for the voltammetric sensing of epinephrine. Electrochemistry Communications, 8, 1035–1040. DOI: 1016/jelecom.2006.08.12. http://dx.doi.org/10.1016/j.elecom.2006.04.01210.1016/j.elecom.2006.04.012Suche in Google Scholar
[82] Wang, L., Bai, J. Y., Huang, P. F., Wang, H. J., Zhang, L. Y., & Zhao, Y. Q. (2006b). Nanostructured gold colloid electrode based on in situ functionalized self-assembled monolayers on gold electrode. Electrochemistry Communications, 8, 18251829. DOI: 1016/j.elecom.2006.08.013. 10.1016/j.elecom.2006.08.013Suche in Google Scholar
[83] Welch, C. M., & Compton, R. G. (2006). The use of nanoparticles in electroanalysis: a review. Analytical and Bioanalytical Chemistry, 384, 601–619. DOI: 10.1007/s00216-005-0230-3. http://dx.doi.org/10.1007/s00216-005-0230-310.1007/s00216-005-0230-3Suche in Google Scholar PubMed
[84] Wildgoose, G. G, Banks, C. E., & Compton, R. G. (2006). Metal nanoparticles and related materials supported on carbon nanotubes. Methods and applications. Small, 2, 182–193. DOI: 10:1002/smll.200500324. Suche in Google Scholar
[85] Wilson, R. (2008). The use of gold nanoparticles in diagnostics and detection. Chemical Society Reviews, 37, 2028–2045. DOI: 10.1039/b712179m. http://dx.doi.org/10.1039/b712179m10.1039/b712179mSuche in Google Scholar PubMed
[86] Yee, C. K., Jordan, R., Ulman, A., White, H., King, A., Rafailovich, M., & Sokolov, J. (1999). Novel one-phase synthesis of thiol functionalized gold, palladium, and iridium nanoparticles using superhydride. Langmuir, 15, 3486–3491. DOI: 10.1021/la990015e. http://dx.doi.org/10.1021/la990015e10.1021/la990015eSuche in Google Scholar
© 2011 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Ultrathin organic, inorganic, hybrid, and living cell coatings — Topical Issue
- Functional polymer thin films designed for antifouling materials and biosensors
- In-situ polymerized molecularly imprinted polymeric thin films used as sensing layers in surface plasmon resonance sensors: Mini-review focused on 2010–2011
- Design of polyglycidol-containing microspheres for biomedical applications
- On the interfacial chemistry of aryl diazonium compounds in polymer science
- Polypyrrole coating of inorganic and organic materials by chemical oxidative polymerisation
- Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline
- Ultrathin functional films of titanium(IV) oxide
- Sol-gel thin films with anti-reflective and self-cleaning properties
- Nanostructured electrocatalysts immobilised on electrode surfaces and organic film templates
- Influence of adsorbed oxygen on charge transport and chlorine gas-sensing characteristics of thin cobalt phthalocyanine films
- Ni-W alloy coatings deposited from a citrate electrolyte
- Role of reactive species in processing materials at laboratory temperature by spray plasma devices
- Electrodeposition of hafnium and hafnium-based coatings in molten salts
- Role of interfacial chemistry on the rheology and thermo-mechanical properties of clay-polymer nanocomposites for building applications
- Endothelial cell adhesion on polyelectrolyte multilayer films functionalised with fibronectin and collagen
Artikel in diesem Heft
- Ultrathin organic, inorganic, hybrid, and living cell coatings — Topical Issue
- Functional polymer thin films designed for antifouling materials and biosensors
- In-situ polymerized molecularly imprinted polymeric thin films used as sensing layers in surface plasmon resonance sensors: Mini-review focused on 2010–2011
- Design of polyglycidol-containing microspheres for biomedical applications
- On the interfacial chemistry of aryl diazonium compounds in polymer science
- Polypyrrole coating of inorganic and organic materials by chemical oxidative polymerisation
- Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline
- Ultrathin functional films of titanium(IV) oxide
- Sol-gel thin films with anti-reflective and self-cleaning properties
- Nanostructured electrocatalysts immobilised on electrode surfaces and organic film templates
- Influence of adsorbed oxygen on charge transport and chlorine gas-sensing characteristics of thin cobalt phthalocyanine films
- Ni-W alloy coatings deposited from a citrate electrolyte
- Role of reactive species in processing materials at laboratory temperature by spray plasma devices
- Electrodeposition of hafnium and hafnium-based coatings in molten salts
- Role of interfacial chemistry on the rheology and thermo-mechanical properties of clay-polymer nanocomposites for building applications
- Endothelial cell adhesion on polyelectrolyte multilayer films functionalised with fibronectin and collagen