Startseite Synthesis, optical, and spectroscopic characterisation of substituted 3-phenyl-2-arylacrylonitriles
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis, optical, and spectroscopic characterisation of substituted 3-phenyl-2-arylacrylonitriles

  • M. Percino EMAIL logo , Víctor Chapela , Enrique Pérez-Gutiérrez , Margarita Cerón und Guillermo Soriano
Veröffentlicht/Copyright: 30. Dezember 2010
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The Knoevenagel condensation between aldehydes and substrates with active methylene groups was applied to synthesise a series of 3-(4-substituted phenyl)-2-arylacrylonitriles (aryl = phenyl or pyridyl). Chloro-, fluoro-, or dimethylamino-substituted aryls and a cyano group attached to the double bond of acrylonitrile were studied. Previous studies showed that the condensation products were E isomers. The compounds synthesised were: 3-(4-chlorophenyl)-2-phenylacrylonitrile, 3-(4-chlorophenyl)-2-(pyridin-2-yl)acrylonitrile, 3-(4-chlorophenyl)-2-(pyridin-3-yl)acrylonitrile, 3-(4-chlorophenyl)-2-(pyridin-4-yl)acrylonitrile, 3-(4-fluorophenyl)-2-phenylacrylonitrile, 3-(4-fluorophenyl)-2-(pyridin-2-yl)acrylonitrile, 3-(4-fluorophenyl)-2-(pyridin-3-yl)acrylonitrile, 3-(4-fluorophenyl)-2-(pyridin-4-yl)acrylonitrile, 3-(4-dimethylaminophenyl)-2-phenylacrylonitrile, 3-(4-dimethylaminophenyl)-2-(pyridin-2-yl)acrylonitrile, 3-(4-dimethylaminophenyl)-2-(pyridin-3-yl)acrylonitrile, and 3-(4-dimethylaminophenyl)-2-(pyridin-4-yl)acrylonitrile. Structures were confirmed by IR, MS, and NMR spectral data. Molar absorption coefficient, absorbance, and fluorescence emission spectra were compared in order to evaluate the effects of substituents on phenyl and the position of nitrogen in pyridine moiety on the electronic properties of acrylonitrile derivatives prepared.

[1] Al-Shihry, S. S. (2004). Synthesis of substituted stilbenes via the Knoevenagel condensation. Molecules, 9, 658–665. DOI: 10.3390/90800658. http://dx.doi.org/10.3390/9080065810.3390/90800658Suche in Google Scholar

[2] Bigi, F., Conforti, M. L., Maggi, R., Piccino, A., & Sartori, G. (2000). Clean synthesis in water: uncatalysed preparation of ylidenemalononitriles. Green Chemistry, 2, 101–103. DOI: 10.1039/b001246g. http://dx.doi.org/10.1039/b001246g10.1039/b001246gSuche in Google Scholar

[3] Boucard, V. (2001). Kinetic study of the Knoevenagel condensation applied to the synthesis of poly[bicarbazolylene-altphenylenebis(cyanovinylene)]s. Macromolecules, 34, 4308–4313. DOI: 10.1021/ma002233g. http://dx.doi.org/10.1021/ma002233g10.1021/ma002233gSuche in Google Scholar

[4] D’sa, B. A., Kisanga, P., & Verkade, J. G. (1998). Direct synthesis of α, β-unsaturated nitriles catalyzed by nonionic superbases. The Journal of Organic Chemistry, 63, 3961–3967. DOI: 10.1021/jo972343u. http://dx.doi.org/10.1021/jo972343u10.1021/jo972343uSuche in Google Scholar

[5] Dubey, P. K., Prasada Reddy, P. V. V., & Srinivas, K. (2007). A facile tandem synthesis of α-benzyl benzimidazole acetonitriles. ARKIVOC, 2007(xv), 192–198. 10.3998/ark.5550190.0008.f19Suche in Google Scholar

[6] Fraysse, M. J. (1980). Nitriles: their application in perfumery. Perfumer & Flavorist, 4, 11–12. Suche in Google Scholar

[7] Fringuelli, F., Pani, G., Piermatti, O., & Pizzo, F. (1994). Condensation reactions in water of active methylene compounds with arylaldehydes. One-pot synthesis of flavonols. Tetrahedron, 50, 11499–11508. DOI: 10.1016/S0040-4020(01)89287-5. http://dx.doi.org/10.1016/S0040-4020(01)89287-510.1016/S0040-4020(01)89287-5Suche in Google Scholar

[8] Frost, H. V. (1889). Ueber die Condensation von Benzylcyanid und seinen Substitutionsproducten mit Aldehyden und mit Amylnitrit. Justus Liebigs Annalen der Chemie, 250, 156–166. DOI: 10.1002/jlac.18892500106. http://dx.doi.org/10.1002/jlac.1889250010610.1002/jlac.18892500106Suche in Google Scholar

[9] Gatial, A., Milata, V., Biskupič, S., Pigošova, J., Herzog, K., & Salzer, R. (2004). The vibrational and NMR spectra and conformations of methoxymethylene- and 1-methoxyethylidenepropanedinitrile including solvent effect calculations. Asian Chemistry Letters, 8, 169–186. Suche in Google Scholar

[10] Gill, C., Pandhare, G., Raut, R., Gore, V., & Gholap, S. (2008). Knoevenagel condensation in neutral media: A simple and efficient protocol for the synthesis of electrophillic alkenes catalyzed by anhydrous ferric sulphate with remarkable reusability. Bulletin of the Catalysis Society of India, 7, 153–157. Suche in Google Scholar

[11] Gómez, R., Segura, J. L., & Martín, N. (1999). New optically active polyarylene vinylenes: control of chromophore separation by binaphthyl units. Chemical Communications, 1999, 619–620. DOI: 10.1039/a809405e. http://dx.doi.org/10.1039/a809405e10.1039/a809405eSuche in Google Scholar

[12] Gróf, M., Polovková, J., Gatial, A., Milata, V., Černuchová, P., Prónayová, N., & Matějka, P. (2007). Isomers and conformers of two push.pull hydrazines studied by NMR and vibrational spectroscopy and by ab initio calculations. Journal of Molecular Structure, 834-836, 284–293. DOI: 10.1016/j.molstruc.2006.10.018. http://dx.doi.org/10.1016/j.molstruc.2006.10.01810.1016/j.molstruc.2006.10.018Suche in Google Scholar

[13] Guillemin, J.-C., Breneman, C. M., Joseph, J. C., & Ferris, J. P. (1998). Regioselectivity of the photochemical addition of ammonia, phosphine, and silane to olefinic and acetylenic nitriles. Chemistry - A European Journal, 4, 1074–1082. DOI: 10.1002/(SICI)1521-3765(19980615)4:6<1074::AID-CHEM1074>3.0.CO;2-B. http://dx.doi.org/10.1002/(SICI)1521-3765(19980615)4:6<1074::AID-CHEM1074>3.0.CO;2-B10.1002/(SICI)1521-3765(19980615)4:6<1074::AID-CHEM1074>3.0.CO;2-BSuche in Google Scholar

[14] Guillot, R., Loupy, A., Meddour, A., Pellet, M., & Petit, A. (2005). Solvent-free condensation of arylacetonitrile with aldehydes. Tetrahedron, 61, 10129–10137. DOI: 10.1016/j.tet.2005.07.040. http://dx.doi.org/10.1016/j.tet.2005.07.04010.1016/j.tet.2005.07.040Suche in Google Scholar

[15] Knoevenagel, E. (1896). Ueber eine Darstellungsweise des Benzylidenacetessigesters. Berichte der Deutschen Chemischen Gesellschaft, 29, 172–174. DOI: 10.1002/cber.18960290133. http://dx.doi.org/10.1002/cber.1896029013310.1002/cber.18960290133Suche in Google Scholar

[16] Loupy, A., Pellet, M., Petit, A., & Vo-Thanh, G. (2005). Solvent-free condensation of phenylacetonitrile and nonanenitrile with 4-methoxybenzaldehyde: optimization and mechanistic studies. Organic & Biomolecular Chemistry, 3, 1534–1540. DOI: 10.1039/b418156e. http://dx.doi.org/10.1039/b418156e10.1039/b418156eSuche in Google Scholar

[17] Maruyama, S., Tao, X.-T., Hokari, H., Noh, T., Zhang, Y., Wada, T., Sasabe, H., Suzuki, H., Watanabe, T., & Miyata, S. (1998). A cyclic carbazole oligomer for electroluminescence applications. Chemistry Letters, 27, 749–750. DOI: 10.1246/cl.1998.749. http://dx.doi.org/10.1246/cl.1998.74910.1246/cl.1998.749Suche in Google Scholar

[18] Michel, F., Mecklein, L., Crastes de Paulet, A., Doré, J. C., Gilbert, J., & Miquel, J. F. (1984). The effect of various acrylonitriles and related compounds on prostaglandin biosynthesis. Prostaglandins, 27, 69–84. DOI: 10.1016/0090-6980(84)90221-1. http://dx.doi.org/10.1016/0090-6980(84)90221-110.1016/0090-6980(84)90221-1Suche in Google Scholar

[19] Mori, K. (1981). Synthesis of optically active insect pheromones. Yukigosei Kagaku, 39, 63–72. 10.5059/yukigoseikyokaishi.39.63Suche in Google Scholar

[20] Peat, J. R., Minchin, F. R., Jeffcoat, B., & Summerfield, R. J. (1981). Young reproductive structures promote nitrogen fixation in soya bean. Annals of Botany, 48, 177–182. 10.1093/oxfordjournals.aob.a086111Suche in Google Scholar

[21] Percino, M. J., Chapela, V. M., Montiel, L.-F., Pérez-Gutiérrez, E., & Maldonado, J. L. (2010). Spectroscopic characterization of halogen- and cyano-substituted pyridinevinylenes synthesized without catalyst or solvent. Chemical Papers, 64, 360–367. DOI: 10.2478/s11696-010-0012-z. http://dx.doi.org/10.2478/s11696-010-0012-z10.2478/s11696-010-0012-zSuche in Google Scholar

[22] Percino, M. J., Chapela, V. M., Montiel, L.-F., & Rodríguez-Barbarín, C. (2008). X-ray crystal structures of a 1-(p-fluorophenyl)-2-(α-pyridyl)ethanol intermediate and the 1- (p-fluorophenyl)-2-(α-pyridyl)ethene dehydration compound obtained from the condensation reaction of 2-methylpyridine and p-fluorobenzaldehyde. The Open Crystallography Journal, 1, 37–41. DOI: 10.2174/1874846500801010037. http://dx.doi.org/10.2174/187484650080101003710.2174/1874846500801010037Suche in Google Scholar

[23] Percino, M. J., Chapela, V. M., Sanchez, A., & Maldonado-Rivera, J. L. (2006). Condensation reactions of methylpyridines and aromatic aldehydes under catalyst and solvent free conditions. Chemistry: An Indian Journal, 3, 262–267. Suche in Google Scholar

[24] Percino, M. J., Chapela, V. M., Urzúa, O., Montiel, L.-F., & Rodríguez-Barbarín, C. (2007). 1-(p-Fluorophenyl)-2-(2’-pyridyl)ethanol and 1-(p-fluorophenyl)-2-(2’-pyridyl)ethene obtained from the condensation reaction of 2-picoline and p-fluorophenylaldehyde under catalyst- and solvent-free conditions. Research on Chemical Intermediates, 33, 623–629. DOI: 10.1163/156856707781749946. 10.1163/156856707781749946Suche in Google Scholar

[25] Segura, J. L., Martín, N., & Hanack, M. (1999). Oligo-2,6-naphthylenevinylenes - new building blocks for the preparation of photoluminescent polymeric materials. European Journal of Organic Chemistry, 1999, 643–651. DOI: 10.1002/(SICI)1099-0690(199903)1999:3<643::AID-EJOC643>3.0.CO;2-V. http://dx.doi.org/10.1002/(SICI)1099-0690(199903)1999:3<643::AID-EJOC643>3.0.CO;2-V10.1002/(SICI)1099-0690(199903)1999:3<643::AID-EJOC643>3.0.CO;2-VSuche in Google Scholar

[26] Silverstein, R. M., & Webster, F. X. (1997). Spectrometric identification of organic compounds (6th ed.). Hoboken, NJ, USA: Wiley. Suche in Google Scholar

[27] Taha, N., Sasson, Y., & Chidambaram, M. (2008). Phase transfer methodology for the synthesis of substituted stilbenes under Knoevenagel condensation condition. Applied Catalysis A: General, 350, 217–224. DOI: 10.1016/j.apcata.2008.08.011. http://dx.doi.org/10.1016/j.apcata.2008.08.01110.1016/j.apcata.2008.08.011Suche in Google Scholar

[28] Vida, M., Gatial, A., Polovková, J., Zalibera, L., Milata, V., & Salzer, R. (2007). The vibrational and NMR spectra, conformations and ab initio calculations of 1-(cyclopropylamino)-ethylidene propanedinitrile. Asian Chemistry Letters, 11, 11–24. Suche in Google Scholar

[29] Wang, G.-W., & Cheng, B. (2004). Solvent-free and aqueous Knoevenagel condensation of aromatic ketones with malononitrile. ARKIVOC, 2004(ix), 4–8. 10.3998/ark.5550190.0005.902Suche in Google Scholar

[30] Williams, D. H., & Fleming, I. (1980). Spectroscopic methods in organic chemistry (3rd ed.). Maidenhead, UK: McGraw-Hill. Suche in Google Scholar

[31] Wolfe, J. P., Wagaw, S., Marcoux, J.-F., & Buchwald, S. L. (1998). Rational development of practical catalysts for aromatic carbon-nitrogen bond formation. Accounts of Chemical Research, 31, 805–818. DOI: 10.1021/ar9600650. http://dx.doi.org/10.1021/ar960065010.1021/ar9600650Suche in Google Scholar

[32] Yang, J.-S., Chiou, S.-Y., & Liau, K.-L. (2002). Fluorescence enhancement of trans-4-aminostilbene by N-phenyl substitutions: The “amino conjugation effect”. Journal of the American Chemical Society, 124, 2518–2527. DOI: 10.1021/ja016416. http://dx.doi.org/10.1021/ja016416+10.1021/ja016416+Suche in Google Scholar

Published Online: 2010-12-30
Published in Print: 2011-2-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 15.10.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-010-0075-x/html
Button zum nach oben scrollen