Startseite A new group of potential antituberculotics: N-(2-pyridylmethyl)salicylamides and N-(3-pyridylmethyl)salicylamides
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A new group of potential antituberculotics: N-(2-pyridylmethyl)salicylamides and N-(3-pyridylmethyl)salicylamides

  • Eva Petrlíková EMAIL logo , Karel Waisser , Karel Palát , Jiří Kuneš und Jarmila Kaustová
Veröffentlicht/Copyright: 30. Dezember 2010
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

As a part of our systematic study of antimycobacterially active derivatives of salicylamides, a series of nineteen derivatives of N-(2-pyridylmethyl)salicylamides and N-(3-pyridylmethyl)salicylamides was synthesised. The compounds exhibited in vitro activity against Mycobacterium tuberculosis and M. avium. Their lipophilicity, R M, was measured by thin layer chromatography on silica gel impregnated with trioctadecylsilane and the logarithm of the partition coefficient (octanol-water), logP, was calculated. Both the parameters of lipophilicity correlated. The quantitative relationship between the structure and antimycobacterial activity was calculated. Antimycobacterial activity increased with an increase in lipophilicity. The N-(2-pyridylmethyl)salicylamide derivatives were more active than the derivatives of isomeric N-(3-pyridylmethyl)salicylamides. The geometry of compounds was calculated and the calculation was verified by measuring the length of the hydrogen bond between hydroxyl and carbonyl groups on the salicylic moiety.

[1] Allen, C. F. H., & vanAllan, J. (1946). Salicyl-o-toluide. Organic Syntheses, 26, 92–94. 10.15227/orgsyn.026.0092Suche in Google Scholar

[2] Bayer AG. (1975). German Patent No. 2417763. Munich: The German Patent and Trade Mark Office. Suche in Google Scholar

[3] Gaylord, N. G., & Kamath, P. M. (1952). p-Chlorophenyl salicylate. Organic Syntheses, 32, 25–26. 10.15227/orgsyn.032.0025Suche in Google Scholar

[4] Gupta, R. A., Gupta, A. K., Soni, L. K., & Kaskhedikar, S. G. (2009). Study of physicochemical properties-antitubercular activity relationship of naphtalene-1,4-dione analogs: A QSAR approach. Chemical Papers, 63, 723–730. DOI: 10.2478/s11696-009-0080-0. http://dx.doi.org/10.2478/s11696-009-0080-010.2478/s11696-009-0080-0Suche in Google Scholar

[5] Hlasta, D. J., Demers, J. P., Foleno, B. D., Fraga-Spano, S. A., Guan, J., Hilliar, J. J., Macielag, M. J., Ohemeng, K. A., Sheppard, C. M., Sui, Z., Webb, G. C., Weidner-Wells, M. A., Werblood, H., & Barrett, J. F. (1998). Novel inhibitors of bacterial two-component systems with gram positive antibacterial activity: Pharmacophore identification based on the screening hit closantel. Bioorganic & Medicinal Chemistry Letters, 8, 1923–1928. DOI: 10.1016/S0960-894X(98)00326-6. http://dx.doi.org/10.1016/S0960-894X(98)00326-610.1016/S0960-894X(98)00326-6Suche in Google Scholar

[6] Kaliszan, R. (1987). Quantitative structure-chromatographic retention relationships (pp. 232–278). New York, NY, USA: Wiley. Suche in Google Scholar

[7] Macielag, M. J., Demers, J. P., Fraga-Spano, S. A., Hlasta, D. J., Johnson, S. G., Kanojia, R. M., Russell, R. K., Sui, Z., Weidner-Wells, M. A., Werblood, H., Foleno, B. D., Goldschmidt, R. M., Loeloff, M. J., Webb, G. C., & Barrett, J. F. (1998). Substituted salicylanilides as inhibitors of twocomponent regulatory systems in bacteria. Journal of Medicinal Chemistry, 41, 2939–2945. DOI: 10.1021/jm9803572. http://dx.doi.org/10.1021/jm980357210.1021/jm9803572Suche in Google Scholar PubMed

[8] Nemeček, P., Ďurčeková, T., Mocák, J., & Waisser, K. (2009). Chemometrical analysis of computed QSAR parameters and their use in biological activity prediction. Chemical Papers, 63, 84–91. DOI: 10.2478/s11696-008-0089-9. http://dx.doi.org/10.2478/s11696-008-0089-910.2478/s11696-008-0089-9Suche in Google Scholar

[9] Waisser, K., Bureš, O., Holý, P., Kuneš, J., Oswald, R., Jirásková, L., Pour, M., Klimešová, V., Kubicová, L., & Kaustová, J. (2003b). Relationships between the structure and antimycobacterial activity of substituted salicylanilides. Archiv der Pharmazie, 336, 53–71. DOI: 10.1002/ardp.200390004. http://dx.doi.org/10.1002/ardp.20039000410.1002/ardp.200390004Suche in Google Scholar PubMed

[10] Waisser, K., Hladůvková, J., Kuneš, J., Kubicová, L., Klimešová, V., Karajannis, P., & Kaustová, J. (2001). Synthesis and antimycobacterial activity of salicylanilides substituted in position 5. Chemical Papers, 55, 121–129. Suche in Google Scholar

[11] Waisser, K., Peřina, M., Klimešová, V., & Kaustová, J. (2003a). On the relationship between the structure and antimycobacterial activity of substituted N-benzylsalicylamides. Collection of Czechoslovak Chemical Communications, 68, 1275–1294. DOI: 10.1135/cccc20031275. http://dx.doi.org/10.1135/cccc2003127510.1135/cccc20031275Suche in Google Scholar

[12] World Health Organization (2009). Global tuberculosis control: epidemiology, strategy, financing: WHO report 2009. Geneva, Switzerland: WHO Press. Suche in Google Scholar

Published Online: 2010-12-30
Published in Print: 2011-2-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 15.10.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-010-0084-9/html
Button zum nach oben scrollen