Home Synthesis, optical, and spectroscopic characterisation of substituted 3-phenyl-2-arylacrylonitriles
Article
Licensed
Unlicensed Requires Authentication

Synthesis, optical, and spectroscopic characterisation of substituted 3-phenyl-2-arylacrylonitriles

  • M. Percino EMAIL logo , Víctor Chapela , Enrique Pérez-Gutiérrez , Margarita Cerón and Guillermo Soriano
Published/Copyright: December 30, 2010
Become an author with De Gruyter Brill

Abstract

The Knoevenagel condensation between aldehydes and substrates with active methylene groups was applied to synthesise a series of 3-(4-substituted phenyl)-2-arylacrylonitriles (aryl = phenyl or pyridyl). Chloro-, fluoro-, or dimethylamino-substituted aryls and a cyano group attached to the double bond of acrylonitrile were studied. Previous studies showed that the condensation products were E isomers. The compounds synthesised were: 3-(4-chlorophenyl)-2-phenylacrylonitrile, 3-(4-chlorophenyl)-2-(pyridin-2-yl)acrylonitrile, 3-(4-chlorophenyl)-2-(pyridin-3-yl)acrylonitrile, 3-(4-chlorophenyl)-2-(pyridin-4-yl)acrylonitrile, 3-(4-fluorophenyl)-2-phenylacrylonitrile, 3-(4-fluorophenyl)-2-(pyridin-2-yl)acrylonitrile, 3-(4-fluorophenyl)-2-(pyridin-3-yl)acrylonitrile, 3-(4-fluorophenyl)-2-(pyridin-4-yl)acrylonitrile, 3-(4-dimethylaminophenyl)-2-phenylacrylonitrile, 3-(4-dimethylaminophenyl)-2-(pyridin-2-yl)acrylonitrile, 3-(4-dimethylaminophenyl)-2-(pyridin-3-yl)acrylonitrile, and 3-(4-dimethylaminophenyl)-2-(pyridin-4-yl)acrylonitrile. Structures were confirmed by IR, MS, and NMR spectral data. Molar absorption coefficient, absorbance, and fluorescence emission spectra were compared in order to evaluate the effects of substituents on phenyl and the position of nitrogen in pyridine moiety on the electronic properties of acrylonitrile derivatives prepared.

[1] Al-Shihry, S. S. (2004). Synthesis of substituted stilbenes via the Knoevenagel condensation. Molecules, 9, 658–665. DOI: 10.3390/90800658. http://dx.doi.org/10.3390/9080065810.3390/90800658Search in Google Scholar

[2] Bigi, F., Conforti, M. L., Maggi, R., Piccino, A., & Sartori, G. (2000). Clean synthesis in water: uncatalysed preparation of ylidenemalononitriles. Green Chemistry, 2, 101–103. DOI: 10.1039/b001246g. http://dx.doi.org/10.1039/b001246g10.1039/b001246gSearch in Google Scholar

[3] Boucard, V. (2001). Kinetic study of the Knoevenagel condensation applied to the synthesis of poly[bicarbazolylene-altphenylenebis(cyanovinylene)]s. Macromolecules, 34, 4308–4313. DOI: 10.1021/ma002233g. http://dx.doi.org/10.1021/ma002233g10.1021/ma002233gSearch in Google Scholar

[4] D’sa, B. A., Kisanga, P., & Verkade, J. G. (1998). Direct synthesis of α, β-unsaturated nitriles catalyzed by nonionic superbases. The Journal of Organic Chemistry, 63, 3961–3967. DOI: 10.1021/jo972343u. http://dx.doi.org/10.1021/jo972343u10.1021/jo972343uSearch in Google Scholar

[5] Dubey, P. K., Prasada Reddy, P. V. V., & Srinivas, K. (2007). A facile tandem synthesis of α-benzyl benzimidazole acetonitriles. ARKIVOC, 2007(xv), 192–198. 10.3998/ark.5550190.0008.f19Search in Google Scholar

[6] Fraysse, M. J. (1980). Nitriles: their application in perfumery. Perfumer & Flavorist, 4, 11–12. Search in Google Scholar

[7] Fringuelli, F., Pani, G., Piermatti, O., & Pizzo, F. (1994). Condensation reactions in water of active methylene compounds with arylaldehydes. One-pot synthesis of flavonols. Tetrahedron, 50, 11499–11508. DOI: 10.1016/S0040-4020(01)89287-5. http://dx.doi.org/10.1016/S0040-4020(01)89287-510.1016/S0040-4020(01)89287-5Search in Google Scholar

[8] Frost, H. V. (1889). Ueber die Condensation von Benzylcyanid und seinen Substitutionsproducten mit Aldehyden und mit Amylnitrit. Justus Liebigs Annalen der Chemie, 250, 156–166. DOI: 10.1002/jlac.18892500106. http://dx.doi.org/10.1002/jlac.1889250010610.1002/jlac.18892500106Search in Google Scholar

[9] Gatial, A., Milata, V., Biskupič, S., Pigošova, J., Herzog, K., & Salzer, R. (2004). The vibrational and NMR spectra and conformations of methoxymethylene- and 1-methoxyethylidenepropanedinitrile including solvent effect calculations. Asian Chemistry Letters, 8, 169–186. Search in Google Scholar

[10] Gill, C., Pandhare, G., Raut, R., Gore, V., & Gholap, S. (2008). Knoevenagel condensation in neutral media: A simple and efficient protocol for the synthesis of electrophillic alkenes catalyzed by anhydrous ferric sulphate with remarkable reusability. Bulletin of the Catalysis Society of India, 7, 153–157. Search in Google Scholar

[11] Gómez, R., Segura, J. L., & Martín, N. (1999). New optically active polyarylene vinylenes: control of chromophore separation by binaphthyl units. Chemical Communications, 1999, 619–620. DOI: 10.1039/a809405e. http://dx.doi.org/10.1039/a809405e10.1039/a809405eSearch in Google Scholar

[12] Gróf, M., Polovková, J., Gatial, A., Milata, V., Černuchová, P., Prónayová, N., & Matějka, P. (2007). Isomers and conformers of two push.pull hydrazines studied by NMR and vibrational spectroscopy and by ab initio calculations. Journal of Molecular Structure, 834-836, 284–293. DOI: 10.1016/j.molstruc.2006.10.018. http://dx.doi.org/10.1016/j.molstruc.2006.10.01810.1016/j.molstruc.2006.10.018Search in Google Scholar

[13] Guillemin, J.-C., Breneman, C. M., Joseph, J. C., & Ferris, J. P. (1998). Regioselectivity of the photochemical addition of ammonia, phosphine, and silane to olefinic and acetylenic nitriles. Chemistry - A European Journal, 4, 1074–1082. DOI: 10.1002/(SICI)1521-3765(19980615)4:6<1074::AID-CHEM1074>3.0.CO;2-B. http://dx.doi.org/10.1002/(SICI)1521-3765(19980615)4:6<1074::AID-CHEM1074>3.0.CO;2-B10.1002/(SICI)1521-3765(19980615)4:6<1074::AID-CHEM1074>3.0.CO;2-BSearch in Google Scholar

[14] Guillot, R., Loupy, A., Meddour, A., Pellet, M., & Petit, A. (2005). Solvent-free condensation of arylacetonitrile with aldehydes. Tetrahedron, 61, 10129–10137. DOI: 10.1016/j.tet.2005.07.040. http://dx.doi.org/10.1016/j.tet.2005.07.04010.1016/j.tet.2005.07.040Search in Google Scholar

[15] Knoevenagel, E. (1896). Ueber eine Darstellungsweise des Benzylidenacetessigesters. Berichte der Deutschen Chemischen Gesellschaft, 29, 172–174. DOI: 10.1002/cber.18960290133. http://dx.doi.org/10.1002/cber.1896029013310.1002/cber.18960290133Search in Google Scholar

[16] Loupy, A., Pellet, M., Petit, A., & Vo-Thanh, G. (2005). Solvent-free condensation of phenylacetonitrile and nonanenitrile with 4-methoxybenzaldehyde: optimization and mechanistic studies. Organic & Biomolecular Chemistry, 3, 1534–1540. DOI: 10.1039/b418156e. http://dx.doi.org/10.1039/b418156e10.1039/b418156eSearch in Google Scholar

[17] Maruyama, S., Tao, X.-T., Hokari, H., Noh, T., Zhang, Y., Wada, T., Sasabe, H., Suzuki, H., Watanabe, T., & Miyata, S. (1998). A cyclic carbazole oligomer for electroluminescence applications. Chemistry Letters, 27, 749–750. DOI: 10.1246/cl.1998.749. http://dx.doi.org/10.1246/cl.1998.74910.1246/cl.1998.749Search in Google Scholar

[18] Michel, F., Mecklein, L., Crastes de Paulet, A., Doré, J. C., Gilbert, J., & Miquel, J. F. (1984). The effect of various acrylonitriles and related compounds on prostaglandin biosynthesis. Prostaglandins, 27, 69–84. DOI: 10.1016/0090-6980(84)90221-1. http://dx.doi.org/10.1016/0090-6980(84)90221-110.1016/0090-6980(84)90221-1Search in Google Scholar

[19] Mori, K. (1981). Synthesis of optically active insect pheromones. Yukigosei Kagaku, 39, 63–72. 10.5059/yukigoseikyokaishi.39.63Search in Google Scholar

[20] Peat, J. R., Minchin, F. R., Jeffcoat, B., & Summerfield, R. J. (1981). Young reproductive structures promote nitrogen fixation in soya bean. Annals of Botany, 48, 177–182. 10.1093/oxfordjournals.aob.a086111Search in Google Scholar

[21] Percino, M. J., Chapela, V. M., Montiel, L.-F., Pérez-Gutiérrez, E., & Maldonado, J. L. (2010). Spectroscopic characterization of halogen- and cyano-substituted pyridinevinylenes synthesized without catalyst or solvent. Chemical Papers, 64, 360–367. DOI: 10.2478/s11696-010-0012-z. http://dx.doi.org/10.2478/s11696-010-0012-z10.2478/s11696-010-0012-zSearch in Google Scholar

[22] Percino, M. J., Chapela, V. M., Montiel, L.-F., & Rodríguez-Barbarín, C. (2008). X-ray crystal structures of a 1-(p-fluorophenyl)-2-(α-pyridyl)ethanol intermediate and the 1- (p-fluorophenyl)-2-(α-pyridyl)ethene dehydration compound obtained from the condensation reaction of 2-methylpyridine and p-fluorobenzaldehyde. The Open Crystallography Journal, 1, 37–41. DOI: 10.2174/1874846500801010037. http://dx.doi.org/10.2174/187484650080101003710.2174/1874846500801010037Search in Google Scholar

[23] Percino, M. J., Chapela, V. M., Sanchez, A., & Maldonado-Rivera, J. L. (2006). Condensation reactions of methylpyridines and aromatic aldehydes under catalyst and solvent free conditions. Chemistry: An Indian Journal, 3, 262–267. Search in Google Scholar

[24] Percino, M. J., Chapela, V. M., Urzúa, O., Montiel, L.-F., & Rodríguez-Barbarín, C. (2007). 1-(p-Fluorophenyl)-2-(2’-pyridyl)ethanol and 1-(p-fluorophenyl)-2-(2’-pyridyl)ethene obtained from the condensation reaction of 2-picoline and p-fluorophenylaldehyde under catalyst- and solvent-free conditions. Research on Chemical Intermediates, 33, 623–629. DOI: 10.1163/156856707781749946. 10.1163/156856707781749946Search in Google Scholar

[25] Segura, J. L., Martín, N., & Hanack, M. (1999). Oligo-2,6-naphthylenevinylenes - new building blocks for the preparation of photoluminescent polymeric materials. European Journal of Organic Chemistry, 1999, 643–651. DOI: 10.1002/(SICI)1099-0690(199903)1999:3<643::AID-EJOC643>3.0.CO;2-V. http://dx.doi.org/10.1002/(SICI)1099-0690(199903)1999:3<643::AID-EJOC643>3.0.CO;2-V10.1002/(SICI)1099-0690(199903)1999:3<643::AID-EJOC643>3.0.CO;2-VSearch in Google Scholar

[26] Silverstein, R. M., & Webster, F. X. (1997). Spectrometric identification of organic compounds (6th ed.). Hoboken, NJ, USA: Wiley. Search in Google Scholar

[27] Taha, N., Sasson, Y., & Chidambaram, M. (2008). Phase transfer methodology for the synthesis of substituted stilbenes under Knoevenagel condensation condition. Applied Catalysis A: General, 350, 217–224. DOI: 10.1016/j.apcata.2008.08.011. http://dx.doi.org/10.1016/j.apcata.2008.08.01110.1016/j.apcata.2008.08.011Search in Google Scholar

[28] Vida, M., Gatial, A., Polovková, J., Zalibera, L., Milata, V., & Salzer, R. (2007). The vibrational and NMR spectra, conformations and ab initio calculations of 1-(cyclopropylamino)-ethylidene propanedinitrile. Asian Chemistry Letters, 11, 11–24. Search in Google Scholar

[29] Wang, G.-W., & Cheng, B. (2004). Solvent-free and aqueous Knoevenagel condensation of aromatic ketones with malononitrile. ARKIVOC, 2004(ix), 4–8. 10.3998/ark.5550190.0005.902Search in Google Scholar

[30] Williams, D. H., & Fleming, I. (1980). Spectroscopic methods in organic chemistry (3rd ed.). Maidenhead, UK: McGraw-Hill. Search in Google Scholar

[31] Wolfe, J. P., Wagaw, S., Marcoux, J.-F., & Buchwald, S. L. (1998). Rational development of practical catalysts for aromatic carbon-nitrogen bond formation. Accounts of Chemical Research, 31, 805–818. DOI: 10.1021/ar9600650. http://dx.doi.org/10.1021/ar960065010.1021/ar9600650Search in Google Scholar

[32] Yang, J.-S., Chiou, S.-Y., & Liau, K.-L. (2002). Fluorescence enhancement of trans-4-aminostilbene by N-phenyl substitutions: The “amino conjugation effect”. Journal of the American Chemical Society, 124, 2518–2527. DOI: 10.1021/ja016416. http://dx.doi.org/10.1021/ja016416+10.1021/ja016416+Search in Google Scholar

Published Online: 2010-12-30
Published in Print: 2011-2-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 15.10.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-010-0075-x/html
Scroll to top button