Startseite Impact of ionic strength on adsorption capacity of chromatographic particles employed in separation of monoclonal antibodies
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Impact of ionic strength on adsorption capacity of chromatographic particles employed in separation of monoclonal antibodies

  • Katarzyna Wrzosek EMAIL logo , Michal Gramblička , Darina Tóthová , Monika Antošová und Milan Polakovič
Veröffentlicht/Copyright: 6. Mai 2010
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The influence of ionic strength on the adsorption capacity of seven commercial adsorbents used in downstream processing of monoclonal antibodies was examined. Affinity (MabSelect, Poros 50A High Capacity, ProSep-vA High Capacity), hydrophobic charge-induction (MEP HyperCel), and cation exchange adsorbents (FractoGel EMD SE Hicap (M), SP Sepharose Fast Flow, Ceramic HyperD F) were used to study the adsorption of polyclonal human immunoglobulin G at optimal pH values. The ionic strength, adjusted by sodium chloride concentrations in the range of 0–225 mM, strongly decreased the adsorption capacity of the cation exchangers. Equilibrium data were described in the form of the dependence of the ratio of protein concentrations in the solid and liquid phases on the total concentration of cation counter ions. They were successfully fitted and interpreted through a stoichiometric ion-exchange model.

[1] Barrande, M., Beurroies, I., Denoyel, R., Tatárová, I., Gramblička, M., Polakovič, M., Joehnck, M., & Schulte, M. (2009). Characterisation of porous materials for bioseparation. Journal of Chromatography A, 1216, 6906–6916. DOI: 10.1016/j.chroma.2009.07.075. http://dx.doi.org/10.1016/j.chroma.2009.07.07510.1016/j.chroma.2009.07.075Suche in Google Scholar

[2] Boschetti, E. (2002). Antibody separation by hydrophobic charge induction chromatography. Trends in Biotechnology, 20, 333–337. DOI: 10.1016/S0167-7799(02)01980-7. http://dx.doi.org/10.1016/S0167-7799(02)01980-710.1016/S0167-7799(02)01980-7Suche in Google Scholar

[3] Burton, S. C., & Harding, D. R. K. (1998). Hydrophobic charge induction chromatography: salt independent protein adsorption and facile elution with aqueous buffers. Journal of Chromatography A, 814, 71–81. DOI: 10.1016/S0021-9673(98)00436-1. http://dx.doi.org/10.1016/S0021-9673(98)00436-110.1016/S0021-9673(98)00436-1Suche in Google Scholar

[4] Carter-Franklin, N., Victa, C., McDonald, P., & Fahrner, R. (2007). Fragments of protein A eluted during protein A affinity chromatography. Journal of Chromatography A, 1163, 105–111. DOI: 10.1016/j.chroma.2007.06.012. http://dx.doi.org/10.1016/j.chroma.2007.06.01210.1016/j.chroma.2007.06.012Suche in Google Scholar

[5] Chen, J., Tetrault, J., & Ley, A. (2008). Comparison of standard and new generation hydrophobic interaction chromatography resins in the monoclonal antibody purification process. Journal of Chromatography A, 1177, 272–281. DOI: 10.1016/j.chroma.2007.07.083. http://dx.doi.org/10.1016/j.chroma.2007.07.08310.1016/j.chroma.2007.07.083Suche in Google Scholar

[6] Denton, G., Murray, A., Price, M. R., & Levison, P. R. (2001). Direct isolation of monoclonal antibodies from tissue culture supernatant using the cation-exchange cellulose Express-Ion S. Journal of Chromatography A, 908, 223–234. DOI: 10.1016/S0021-9673(00)00834-7. http://dx.doi.org/10.1016/S0021-9673(00)00834-710.1016/S0021-9673(00)00834-7Suche in Google Scholar

[7] Faude, A., Zacher, D., Müller, E., & Böttinger, H. (2007). Fast determination of conditions for maximum dynamic capacity in cation-exchange chromatography of human monoclonal antibodies. Journal of Chromatography A, 1161, 29–35 DOI: 10.1016/j.chroma.2007.03.114. http://dx.doi.org/10.1016/j.chroma.2007.03.11410.1016/j.chroma.2007.03.114Suche in Google Scholar PubMed

[8] Follman, D. K., & Fahrner, R. L. (2004). Factorial screening of antibody purification processes using three chromatography steps without protein A. Journal of Chromatography A, 1024, 79–85. DOI: 10.1016/j.chroma.2003.10.060. http://dx.doi.org/10.1016/j.chroma.2003.10.06010.1016/j.chroma.2003.10.060Suche in Google Scholar PubMed

[9] Forrer, N., Butté, A., & Morbidelli, M. (2008). Chromatographic behavior of a polyclonal antibody mixture on a strong cation exchanger column. Part I: Adsorption characterization Journal of Chromatography A, 1214, 59–70. DOI: 10.1016/j.chroma.2008.10.048. http://dx.doi.org/10.1016/j.chroma.2008.10.04810.1016/j.chroma.2008.10.048Suche in Google Scholar PubMed

[10] Ghose, S., Hubbard, B., & Cramer, S. M. (2006). Evaluation and comparison of alternatives to Protein A chromatography: Mimetic and hydrophobic charge induction chromatographic stationary phases. Journal of Chromatography A, 1122, 144–152. DOI: 10.1016/j.chroma.2006.04.083. http://dx.doi.org/10.1016/j.chroma.2006.04.08310.1016/j.chroma.2006.04.083Suche in Google Scholar PubMed

[11] Gramblička, M., Tóthová, D., Antošová, M., & Polakovič, M. (2008). Influence of pH on adsorption of human immunoglobulin gamma, human serum albumin and horse myoglobin by commercial chromatographic materials designed for downstream processing of monoclonal antibodies. Acta Chimica Slovaca, 1(1) 85–94. Suche in Google Scholar

[12] Guerrier, L., Flayeux, I., & Boschetti, E. (2001). A dual-mode approach to the selective separation of antibodies and their fragments. Journal of Chromatography B, 755, 37–46. DOI: 10.1016/S0378-4347(00)00598-3. http://dx.doi.org/10.1016/S0378-4347(00)00598-310.1016/S0378-4347(00)00598-3Suche in Google Scholar

[13] Hahn, R., Schlegel, R., & Jungbauer, A. (2003). Comparison of protein A affinity sorbents. Journal of Chromatography B, 790, 35–51. DOI: 10.1016/S1570-0232(03)00092-8. http://dx.doi.org/10.1016/S1570-0232(03)00092-810.1016/S1570-0232(03)00092-8Suche in Google Scholar

[14] Hahn, R., Shimahara, K., Steindl, F., & Jungbauer, A. (2006). Comparison of protein A affinity sorbents III. Life time study. Journal of Chromatography A, 1102, 224–231. DOI: 10.1016/j.chroma.2005.10.083. 10.1016/j.chroma.2005.10.083Suche in Google Scholar

[15] Hober, S., Nord, K., & Linhult, M. (2007). Protein A chromatography for antibody purification. Journal of Chromatography B, 848, 40–47. DOI: 10.1016/j.jchromb.2006.09. 030. http://dx.doi.org/10.1016/j.jchromb.2006.09.03010.1016/j.jchromb.2006.09.030Suche in Google Scholar

[16] Huse, K., Böhme, H.-J., & Scholz, G. H. (2002). Purification of antibodies by affinity chromatography. Journal of Biochemical and Biophysical Methods, 51, 217–231. DOI: 10.1016/S0165-022X(02)00017-9. http://dx.doi.org/10.1016/S0165-022X(02)00017-910.1016/S0165-022X(02)00017-9Suche in Google Scholar

[17] Jungbauer, A. (2005). Chromatographic media for bioseparation. Journal of Chromatography A, 1065, 3–12. DOI: 10.1016/j.chroma.2004.08.162. http://dx.doi.org/10.1016/j.chroma.2004.08.16210.1016/j.chroma.2004.08.162Suche in Google Scholar

[18] Low, D., O’Leary, R., & Pujar, N. S. (2007). Future of antibody purification. Journal of Chromatography B, 848, 48–63. DOI: 10.1016/j.jchromb.2006.10.033. http://dx.doi.org/10.1016/j.jchromb.2006.10.03310.1016/j.jchromb.2006.10.033Suche in Google Scholar

[19] Mollerup, J. M. (2006). Applied thermodynamics: A new frontier for biotechnology. Fluid Phase Equilibria, 241, 205–215. DOI: 10.1016/j.fluid.2005.12.037. http://dx.doi.org/10.1016/j.fluid.2005.12.03710.1016/j.fluid.2005.12.037Suche in Google Scholar

[20] Necina, R., Amatschek, K., & Jungbauer, A. (1998). Capture of human monoclonal antibodies from cell culture supernatant by ion exchange media exhibiting high charge density. Biotechnology and Bioengineering, 60, 689–698. DOI: 10.1002/(SICI)1097-0290(19981220)60:6〈689::AID-BIT6〉3.0.CO;2-M. http://dx.doi.org/10.1002/(SICI)1097-0290(19981220)60:6<689::AID-BIT6>3.0.CO;2-M10.1002/(SICI)1097-0290(19981220)60:6<689::AID-BIT6>3.0.CO;2-MSuche in Google Scholar

[21] Okay, O. (2000). Macroporous copolymer networks. Progress in Polymer Science, 25, 711–779. DOI: 10.1016/S0079-6700(00)00015-0. http://dx.doi.org/10.1016/S0079-6700(00)00015-010.1016/S0079-6700(00)00015-0Suche in Google Scholar

[22] Roque, A. C. A., Silva, C. S. O., & Taipa, M. Á. (2007). Affinitybased methodologies and ligands for antibody purification: Advances and perspectives. Journal of Chromatography A, 1160, 44–55. DOI: 10.1016/j.chroma.2007.05.109. http://dx.doi.org/10.1016/j.chroma.2007.05.10910.1016/j.chroma.2007.05.109Suche in Google Scholar

[23] Schwartz, W., Judd, D., Wysocki, M., Guerrier, L., Birck-Wilson, E., & Boschetti, E. (2001). Comparison of hydrophobic charge induction chromatography with affinity chromatography on protein A for harvest and purification of antibodies. Journal of Chromatography A, 908, 251–263. DOI: 10.1016/S0021-9673(00)01013-X. http://dx.doi.org/10.1016/S0021-9673(00)01013-X10.1016/S0021-9673(00)01013-XSuche in Google Scholar

[24] Shukla, A. A., Hubbard, B., Tressel, T., Guhan, S., & Low, D. (2007). Downstream processing of monoclonal antibodies—Application of platform approaches. Journal of Chromatography B, 848, 28–39. DOI: 10.1016/j.jchromb.2006.09.026. http://dx.doi.org/10.1016/j.jchromb.2006.09.02610.1016/j.jchromb.2006.09.026Suche in Google Scholar

[25] Smith, A. W. (1948). Elements of physics (5th ed.). New York, NY, USA: McGraw-Hill. Suche in Google Scholar

[26] Staby, A., Jacobsen, J. H., Hansen, R. G., Bruus, U. K., & Holm Jensen, I. (2006). Comparison of chromatographic ion-exchange resins: V. Strong and weak cation-exchange resins. Journal of Chromatography A, 1118, 168–179. DOI: 10.1016/j.chroma.2006.03.116. http://dx.doi.org/10.1016/j.chroma.2006.03.11610.1016/j.chroma.2006.03.116Suche in Google Scholar

[27] Staby, A., Sand, M.-B., Hansen, R. G., Jacobsen, J. H., Andersen, L. A., Gerstenberg, M., Bruus, U. K., & Holm Jensen, I. (2005). Comparison of chromatographic ion-exchange resins: IV. Strong and weak cation-exchange resins and heparin resins. Journal of Chromatography A, 1069, 65–77. DOI: 10.1016/j.chroma.2004.11.094. http://dx.doi.org/10.1016/j.chroma.2004.11.09410.1016/j.chroma.2004.11.094Suche in Google Scholar

[28] Stone, M. C., Tao, Y., & Carta, G. (2009). Protein adsorption and transport in agarose and dextran-grafted agarose media for ion exchange chromatography: Effect of ionic strength and protein characteristics. Journal of Chromatography A, 1216, 4465–4474. DOI: 10.1016/j.chroma.2009.03.044. http://dx.doi.org/10.1016/j.chroma.2009.03.04410.1016/j.chroma.2009.03.044Suche in Google Scholar

[29] Tatárová, I., Gramblička, M., Antošová, M., & Polakovič, M. (2008). Characterization of pore structure of chromatographic adsorbents employed in separation of monoclonal antibodies using size-exclusion techniques. Journal of Chromatography A, 1193, 129–135. DOI: 10.1016/j.chroma.2008.04.023. http://dx.doi.org/10.1016/j.chroma.2008.04.02310.1016/j.chroma.2008.04.023Suche in Google Scholar

[30] Tugcu, N., Bae, S. S., Moore, J. A., & Cramer, S. M. (2002). Stationary phase effects on the dynamic affinity of lowmolecular-mass displacers. Journal of Chromatography A, 954, 127–135. DOI: 10.1016/S0021-9673(02)00164-4. http://dx.doi.org/10.1016/S0021-9673(02)00164-410.1016/S0021-9673(02)00164-4Suche in Google Scholar

[31] Zhu-Shimoni, J., Gunawan, F., Thomas, A., Vanderlaan, M., & Stults, J. (2009). Trace level analysis of leached Protein A in bioprocess samples without interference from the large excess of rhMAb IgG. Journal of Immunological Methods, 341, 59–67. DOI: 10.1016/j.jim.2008.10.015. http://dx.doi.org/10.1016/j.jim.2008.10.01510.1016/j.jim.2008.10.015Suche in Google Scholar PubMed

Published Online: 2010-5-6
Published in Print: 2010-8-1

© 2010 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Multi-elemental analysis of marine sediment reference material MESS-3: one-step microwave digestion and determination by high resolution inductively coupled plasma-mass spectrometry (HR-ICP-MS)
  2. Use of a diazocoupling reaction for sensitive and selective spectrophotometeric determination of furosemide in spiked human urine and pharmaceuticals
  3. Flow injection spectrofluorimetric determination of iron(III) in water using salicylic acid
  4. Liquid chromatographic determination of meloxicam in serum after solid phase extraction
  5. Antioxidant, antimicrobial, and tyrosinase inhibition activities of acetone extract of Ascophyllum nodosum
  6. Preparation and properties of surfactant-bacillolysin ion-pair in organic solvents
  7. Comparative evaluation of critical operating conditions for a tubular catalytic reactor using thermal sensitivity and loss-of-stability criteria
  8. Impact of ionic strength on adsorption capacity of chromatographic particles employed in separation of monoclonal antibodies
  9. Activity and regenerability of dealuminated zeolite Y in liquid phase alkylation of benzene with 1-alkene
  10. Polysaccharide from Anacardium occidentale L. tree gum (Policaju) as a coating for Tommy Atkins mangoes
  11. In vitro bioactivity and crystallization behavior of bioactive glass in the system SiO2-CaO-Al2O3-P2O5-Na2O-MgO-CaF2
  12. Synthesis of brushite nanoparticles at different temperatures
  13. Synthesis of 1-phenylbut-3-ene-1,2-dione and its attempted radical polymerization
  14. Vibrational spectroscopic and conformational studies of 1-(4-pyridyl)piperazine
  15. Theoretical binding affinities and spectra of complexes formed by a cyclic β-peptoid with amino acids
  16. Visual spectroscopy detection of triclosan
  17. Euphorbia antisyphilitica residues as a new source of ellagic acid
  18. A novel, stereoselective and practical protocol for the synthesis of 4β-aminopodophyllotoxins
  19. A novel method for N-alkylation of aliphatic amines with ethers over γ-Al2O3
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-010-0019-5/pdf
Button zum nach oben scrollen