Startseite In vitro bioactivity and crystallization behavior of bioactive glass in the system SiO2-CaO-Al2O3-P2O5-Na2O-MgO-CaF2
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

In vitro bioactivity and crystallization behavior of bioactive glass in the system SiO2-CaO-Al2O3-P2O5-Na2O-MgO-CaF2

  • Melek Erol EMAIL logo
Veröffentlicht/Copyright: 6. Mai 2010
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, bioactivity of glass in the system SiO2-CaO-Al2O3-P2O5-Na2O-MgO-CaF2 was investigated. For this purpose, a glass sample was prepared by the traditional melting method. Crystallization behavior of bioactive glass was also investigated using differential thermal analyses. The Avrami constant of bioactive glass sample calculated according to the Ozawa equation was 3.72 ± 0.4, which indicates bulk crystallization. Using the Matusita-Sakka and the Kissinger equations, activation energy of crystal growth was determined as (394 ± 17) kJ mol−1 and (373 ± 12) kJ mol−1, respectively. These results indicate that the crystallization activation energy data of bioactive glass obtained in this study are accurate and reliable. Bioactivity of the resultant glass sample was analyzed by immersion in simulated body fluid. Scanning electron microscopy, thin film X-ray diffraction, ultraviolet spectroscopy and inductively coupled plasma techniques were used to monitor changes in the glass surface and the simulated body fluid composition. The results revealed that a hydroxyapatite layer was formed on the glass surface after 21 days of immersion in SBF. Formation of the hydroxyapatite layer confirmed the bioactivity of the glass in the system SiO2-CaO-Al2O3-P2O5-Na2O-MgO-CaF2. In addition, physical and mechanical properties of the sample were measured to determine changes in the properties with the immersion time. The results show that bioactive glass maintained its strength during the immersion in a simulated body fluid solution.

[1] Abel-Rahim, M. A., Ibrahim, M. M., Dongol, M., & Gaber, A. (1992) Differential scanning calorimetric study of Bi10Se80In10 chalcogenide glass. Journal of Materials Science, 27, 4685–4689. DOI: 10.1007/BF01166006. http://dx.doi.org/10.1007/BF0116600610.1007/BF01166006Suche in Google Scholar

[2] Agathopoulos, S., Tulyaganov, D. U., Valério, P., & Ferreira, J. M. F. (2005) A new model formulation of the SiO2-Al2O3-B2O3-MgO-CaO-Na2O-F glass-ceramics. Biomaterials, 26, 2255–2264. DOI: 10.1016/j.biomaterials.2004.07.030. http://dx.doi.org/10.1016/j.biomaterials.2004.07.03010.1016/j.biomaterials.2004.07.030Suche in Google Scholar

[3] Agathopoulos, S., Tulyaganov, D. U., Ventura, J. M. G., Kannan, S., Karakassides, M. A., & Ferreira, J. M. F. (2006) Formation of hydroxyapatite onto glasses of the CaO-MgO-SiO2 system with B2O3, Na2O, CaF2 and P2O5 additives. Biomaterials, 27, 1832–1840. DOI: 10.1016/j.biomaterials.2005.10.033. http://dx.doi.org/10.1016/j.biomaterials.2005.10.03310.1016/j.biomaterials.2005.10.033Suche in Google Scholar

[4] Aina, V., Malavasi, G., Fiorio Pla, A., Munaron, L., & Morterra, C. (2009) Zinc-containing bioactive glasses: Surface reactivity and behaviour towards endothelial cells. Acta Biomaterialia, 5, 1211–1222. DOI: 10.1016/j.actbio.2008.10.020. http://dx.doi.org/10.1016/j.actbio.2008.10.02010.1016/j.actbio.2008.10.020Suche in Google Scholar

[5] Arstila, H., Vedel, E., Hupa, L., & Hupa, M. (2007) Factors affecting crystallization of bioactive glasses. Journal of the European Ceramic Society, 27, 1543–1546. DOI: 10.1016/j.jeurceramsoc.2006.04.017. http://dx.doi.org/10.1016/j.jeurceramsoc.2006.04.01710.1016/j.jeurceramsoc.2006.04.017Suche in Google Scholar

[6] Barrios de Arenas, I., Schattner, C., & Vásquez, M. (2006) Bioactivity and mechanical properties of Na2O.CaO.SiO2.P2O5 modified glasses. Ceramics International, 32, 515–520. DOI: 10.1016/j.ceramint.2005.04.003. http://dx.doi.org/10.1016/j.ceramint.2005.04.00310.1016/j.ceramint.2005.04.003Suche in Google Scholar

[7] Clupper, D. C., & Hench, L. L. (2003) Crystallization kinetics of tape cast bioactive glass 45S5. Journal of Non-Crystalline Solids, 318, 43–48. DOI: 10.1016/S0022-3093(02)01857-4. http://dx.doi.org/10.1016/S0022-3093(02)01857-410.1016/S0022-3093(02)01857-4Suche in Google Scholar

[8] Dietrich, E., Oudadesse, H., Lucas-Girot, A., Le Gal, Y., Jeanne, S., & Cathelineau, G. (2008) Effects of Mg and Zn on the surface of doped melt-derived glass for biomaterials applications. Applied Surface Science, 255, 391–395. DOI: 10.1016/j.apsusc.2008.06.094. http://dx.doi.org/10.1016/j.apsusc.2008.06.09410.1016/j.apsusc.2008.06.094Suche in Google Scholar

[9] Dubok, V. A. (2000) Bioceramics - yesterday, today, tomorrow. Powder Metallurgy and Metal Ceramics, 39, 381–394. DOI: 10.1023/A:1026617607548. http://dx.doi.org/10.1023/A:102661760754810.1023/A:1026617607548Suche in Google Scholar

[10] El-Kheshen, A. A., Khaliafa, F. A., Saad, E. A., & Elwan, R. L. (2008) Effect of Al2O3 addition on bioactivity, thermal and mechanical properties of some bioactive glasses. Ceramics International, 34, 1667–1673. DOI: 10.1016/j.ceramint.2007.05.016. http://dx.doi.org/10.1016/j.ceramint.2007.05.01610.1016/j.ceramint.2007.05.016Suche in Google Scholar

[11] Goel, A., Shaaban, E. R., Melo, F. C. L., Ribeiro, M. J., & Ferreira, J. M. F. (2007) Non-isothermal crystallization kinetic studies on MgO-Al2O3-SiO2-TiO2 glass. Journal of Non-Crystalline Solids, 353, 2383–2391. DOI: 10.1016/j.jnoncrysol.2007.04.008. http://dx.doi.org/10.1016/j.jnoncrysol.2007.04.00810.1016/j.jnoncrysol.2007.04.008Suche in Google Scholar

[12] Hench, L. L. (1991) Bioceramics: From concept to clinic. Journal of the American Ceramic Society, 74, 1487–1510. DOI: 10.1111/j.1151-2916.1991.tb07132.x. http://dx.doi.org/10.1111/j.1151-2916.1991.tb07132.x10.1111/j.1151-2916.1991.tb07132.xSuche in Google Scholar

[13] Hench, L. L., & Andersson, Ö. (1993) Bioactive glasses. n: L. L. Hench & J. Wilson (Eds.), An introduction to bioceramics (Advanced Series in Ceramics, Vol. 1, pp. 41–62). Singapore. Malaysia: World Scientific Publishing Co. 10.1142/9789814317351_0003Suche in Google Scholar

[14] Hench, L. L., & Paschall, H. A. (1973) Direct chemical bonding between bioactive glass-ceramic materials and bone. Journal of Biomedical Materials Research, 7, 25–42. DOI: 10.1002/jbm.820070304. http://dx.doi.org/10.1002/jbm.82007030410.1002/jbm.820070304Suche in Google Scholar PubMed

[15] Hench, L. L., Splinter, R. J., Allen, W. C., & Greenlee, T. K. (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of Biomedical Materials Research, 5, 117–141. DOI: 10.1002/jbm.820050611 http://dx.doi.org/10.1002/jbm.82005061110.1002/jbm.820050611Suche in Google Scholar

[16] Kamitakahara, M., Ohtsuki, C., Inada, H., Tanihara, M., & Miyazaki, T. (2006) Effect of ZnO addition on bioactive CaO-SiO2-P2O5-CaF2 glass-ceramics containing apatite and wollastonite. Acta Biomaterialia, 2, 467–471. DOI: 10.1016/j.actbio.2006.03.001. http://dx.doi.org/10.1016/j.actbio.2006.03.00110.1016/j.actbio.2006.03.001Suche in Google Scholar PubMed

[17] Kim, H.-M., Miyaji, F., Kokubo, T., Ohtsuki, C., & Nakamura, T. (1995) Bioactivity of Na2O-CaO-SiO2 glasses. Journal of the American Ceramic Society, 78, 2405–2411. DOI: 10.1111/j.1151-2916.1995.tb08677. http://dx.doi.org/10.1111/j.1151-2916.1995.tb08677.x10.1111/j.1151-2916.1995.tb08677.xSuche in Google Scholar

[18] Kingery, W. D., Bowen, H. K., & Uhlmann, D. R. (1976) Introduction to ceramics (2nd Ed.). New York, NY, USA: Wiley. Suche in Google Scholar

[19] Kissinger, H. E. (1956) Variation of peak temperature with heating rate in differential thermal analysis. Journal of Research of the National Bureau of Standards, 57, 217–221. 10.6028/jres.057.026Suche in Google Scholar

[20] Kokubo, T., Ito, S., Shigematsu, M., Sakka, S., & Yamamuro, T. (1985) Mechanical properties of a new type of apatite-containing glass-ceramic for prosthetic application. Journal of Materials Science, 20, 2001–2004. DOI: 10.1007/BF01112282. http://dx.doi.org/10.1007/BF0111228210.1007/BF01112282Suche in Google Scholar

[21] Kokubo, T., Shigematsu, M., Nagashima, Y., Tashiro, M., Nakamura, T., Yamamuro, T., & Higashi, S. (1982) Apatite- and wollastonite-containing glass-ceramics for prosthetic application. Bulletin of the Institute for Chemical Research, 60, 260–268. Suche in Google Scholar

[22] Liu, Y., Xiang, Q., Tan, Y., & Sheng, X. (2008) Nucleation and growth of needle-like fluorapatite crystals in bioactive glass-ceramics. Journal of Non-Crystalline Solids, 354, 938–944. DOI: 10.1016/j.jnoncrysol.2007.07.025. http://dx.doi.org/10.1016/j.jnoncrysol.2007.07.02510.1016/j.jnoncrysol.2007.07.025Suche in Google Scholar

[23] Matusita, K., & Sakka, S. (1980) Kinetic study on crystallization of glass by differential thermal analysis-criterion on application of Kissinger plot. Journal of Non-Crystalline Solids, 38-39, 741–746. DOI: 10.1016/0022-3093(80)90525-6. http://dx.doi.org/10.1016/0022-3093(80)90525-610.1016/0022-3093(80)90525-6Suche in Google Scholar

[24] O’Donnell, M. D., Watts, S. J., Law, R. V., & Hill, R. G. (2008) Effect of P2O5 content in two series of soda lime phosphosilicate glasses on structure and properties - Part II: Physical properties. Journal of Non-Crystalline Solids, 354, 3561–3566. DOI: 10.1016/j.jnoncrysol.2008.03.035. http://dx.doi.org/10.1016/j.jnoncrysol.2008.03.03510.1016/j.jnoncrysol.2008.03.035Suche in Google Scholar

[25] Ozawa, T. (1971) Kinetics of non-isothermal crystallization. Polymer, 12, 150–158. DOI: 10.1016/0032-3861(71)90041-3. http://dx.doi.org/10.1016/0032-3861(71)90041-310.1016/0032-3861(71)90041-3Suche in Google Scholar

[26] Palou, M., Kuzielová, E., Vitkoviè, M., & Noaman, M. S. M. (2009) Mechanism and kinetics of glass-ceramics formation in the Li2O-SiO2-CaO-P2O5-CaF2 system. Central European Journal of Chemistry, 7, 228–233. DOI: 10.2478/s11532-009-0002-6. http://dx.doi.org/10.2478/s11532-009-0002-610.2478/s11532-009-0002-6Suche in Google Scholar

[27] Park, H. C., Lee, S. H., Ryu, B. K., Son, M. M., & Yasui, I. (1996) Nucleation and crystallization kinetics of CaOAl2O3-2SiO2 in powdered anorthite glass. Journal of Materials Science, 31, 4249–4253. DOI: 10.1007/BF00356446. http://dx.doi.org/10.1007/BF0035644610.1007/BF00356446Suche in Google Scholar

[28] Pereira, D., Cachinho, S., Ferro, M. C., & Fernandes, M. H. V. (2004) Surface behaviour of high MgO-containing glasses of the Si-Ca-P-Mg system in a synthetic physiological fluid. Journal of the European Ceramic Society, 24, 3693–3701. DOI: 10.1016/j.jeurceramsoc.2004.02.006. http://dx.doi.org/10.1016/j.jeurceramsoc.2004.02.00610.1016/j.jeurceramsoc.2004.02.006Suche in Google Scholar

[29] Ragel, C. V., Vallet-Regí, M., & Rodríguez-Lorenzo, L. M. (2002) Preparation and in vitro bioactivity of hydroxyapatite/solgel glass biphasic material. Biomaterials, 23, 1865–1872. DOI: 10.1016/S0142-9612(01)00313-1. http://dx.doi.org/10.1016/S0142-9612(01)00313-110.1016/S0142-9612(01)00313-1Suche in Google Scholar

[30] Rámila, A., & Vallet-Regí, M. (2001) Static and dynamic in vitro study of a sol-gel glass bioactivity. Biomaterials, 22, 2301–2306. DOI: 10.1016/S0142-9612(00)00419-1. http://dx.doi.org/10.1016/S0142-9612(00)00419-110.1016/S0142-9612(00)00419-1Suche in Google Scholar

[31] Salman, S. M., Salama, S. N., Darwish, H., & Abo-Mosallam, H. A. (2009) In vitro bioactivity of glass-ceramics of the CaMgSi2O6-CaSiO3-Ca5(PO4)3F-Na2SiO3 system with TiO2 or ZnO additives. Ceramics International, 35, 1083–1093. DOI: 10.1016/j.ceramint.2008.04.025. http://dx.doi.org/10.1016/j.ceramint.2008.04.02510.1016/j.ceramint.2008.04.025Suche in Google Scholar

[32] Saranti, A., Koutselas, I., & Karakassides, M. A. (2006) Bioactive glasses in the system CaO-B2O3-P2O5: Preparation, structural study and in vitro evaluation. Journal of Non-Crystalline Solids, 352, 390–398. DOI: 10.1016/j.jnoncrysol. 2006.01.042. http://dx.doi.org/10.1016/j.jnoncrysol.2006.01.04210.1016/j.jnoncrysol.2006.01.042Suche in Google Scholar

[33] Sung, Y.-M. (2001) Nonisothermal phase formation kinetics in sol-gel-derived strontium bismuth tantalite. Journal of Materials Research, 16, 2039–2044. DOI: 10.1557/JMR.2001.0279. http://dx.doi.org/10.1557/JMR.2001.027910.1557/JMR.2001.0279Suche in Google Scholar

[34] Xin, R., Leng, Y., Chen, J., & Zhang, Q. (2005) A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo. Biomaterials, 26, 6477–6486. DOI: 10.1016/j.biomaterials.2005.04.028. http://dx.doi.org/10.1016/j.biomaterials.2005.04.02810.1016/j.biomaterials.2005.04.028Suche in Google Scholar PubMed

[35] Xu, X. J., Ray, C. S., & Day, D. E. (1991) Nucleation and crystallization of Na2O · 2CaO · 3SiO2 glass by differential thermal analysis. Journal of the American Ceramic Society, 74, 909–914. DOI: 10.1111/j.1151-2916.1991.tb04321. http://dx.doi.org/10.1111/j.1151-2916.1991.tb04321.x10.1111/j.1151-2916.1991.tb04321.xSuche in Google Scholar

[36] Yamamuro, T. (1995). Bioceramics. New York, NY, USA: Elsevier. Suche in Google Scholar

[37] Yilmaz, S., & Gunay, V. (2007) Crystallization kinetics of SiO2-MgO-3CaO-P2O5-Al2O3-ZrO2 glass. Materials Science-Poland, 25, 609–617. Suche in Google Scholar

[38] Žnidaršič-Pongrac, V., & Kolar, D. (1991) The crystallization of diabese glass. Journal of Materials Science, 26, 2490–2494. DOI: 10.1007/BF01130200. http://dx.doi.org/10.1007/BF0113020010.1007/BF01130200Suche in Google Scholar

Published Online: 2010-5-6
Published in Print: 2010-8-1

© 2010 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Multi-elemental analysis of marine sediment reference material MESS-3: one-step microwave digestion and determination by high resolution inductively coupled plasma-mass spectrometry (HR-ICP-MS)
  2. Use of a diazocoupling reaction for sensitive and selective spectrophotometeric determination of furosemide in spiked human urine and pharmaceuticals
  3. Flow injection spectrofluorimetric determination of iron(III) in water using salicylic acid
  4. Liquid chromatographic determination of meloxicam in serum after solid phase extraction
  5. Antioxidant, antimicrobial, and tyrosinase inhibition activities of acetone extract of Ascophyllum nodosum
  6. Preparation and properties of surfactant-bacillolysin ion-pair in organic solvents
  7. Comparative evaluation of critical operating conditions for a tubular catalytic reactor using thermal sensitivity and loss-of-stability criteria
  8. Impact of ionic strength on adsorption capacity of chromatographic particles employed in separation of monoclonal antibodies
  9. Activity and regenerability of dealuminated zeolite Y in liquid phase alkylation of benzene with 1-alkene
  10. Polysaccharide from Anacardium occidentale L. tree gum (Policaju) as a coating for Tommy Atkins mangoes
  11. In vitro bioactivity and crystallization behavior of bioactive glass in the system SiO2-CaO-Al2O3-P2O5-Na2O-MgO-CaF2
  12. Synthesis of brushite nanoparticles at different temperatures
  13. Synthesis of 1-phenylbut-3-ene-1,2-dione and its attempted radical polymerization
  14. Vibrational spectroscopic and conformational studies of 1-(4-pyridyl)piperazine
  15. Theoretical binding affinities and spectra of complexes formed by a cyclic β-peptoid with amino acids
  16. Visual spectroscopy detection of triclosan
  17. Euphorbia antisyphilitica residues as a new source of ellagic acid
  18. A novel, stereoselective and practical protocol for the synthesis of 4β-aminopodophyllotoxins
  19. A novel method for N-alkylation of aliphatic amines with ethers over γ-Al2O3
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-010-0028-4/html
Button zum nach oben scrollen