Abstract
Ritter reaction of podophyllotoxins with chloroacetonitrile and subsequent cleavage of the chloroacetyl group in the resulting chloroacetamide with thiourea under both classical heating and ultrasonic conditions is an efficient procedure for the synthesis of 4β-aminopodophyllotoxins. In general, significant improvements in the rates of reaction and yields of the sonochemical reactions relative to the classical heating reactions were observed.
[1] Berger, J. M., Gambin, S. J., Harrison, S. C., & Wang, J. C. (1996). Structure and mechanism of DNA topoisomerase II. Nature, 379, 225–228. DOI: 10.1038/379225a0. http://dx.doi.org/10.1038/379225a010.1038/379225a0Suche in Google Scholar
[2] Bohlin, L., & Rosen, B. (1996). Podophyllotoxin derivatives: drug discovery and development. Drug Discovery Today, 1, 343–351. DOI: 10.1016/1359-6446(96)10028-3. http://dx.doi.org/10.1016/1359-6446(96)10028-310.1016/1359-6446(96)10028-3Suche in Google Scholar
[3] Burden, D. A., & Osheroff, N. (1998). Mechanism of action of eukaryotic topoisomerase II and drug targeted to the enzyme. Biochimica et Biophysica Acta — Gene Structure and Expression, 1400, 139–154. DOI: 10.1016/S0167-4781(98)00132-8. http://dx.doi.org/10.1016/S0167-4781(98)00132-810.1016/S0167-4781(98)00132-8Suche in Google Scholar
[4] Canetta, R., Hilgard, P., Florentine, S., Bedogni, P., & Lenaz, L. (1982). Current development of podophyllotoxins. Cancer Chemotherapy and Pharmacology, 7, 93–98. DOI: 10.1007/BF00254528. http://dx.doi.org/10.1007/BF0025452810.1007/BF00254528Suche in Google Scholar
[5] Chen, S. Y., Yu, Y. Q., You, J. Z., & Chen, Y. Z. (2000). Two new methods for synthesis of 4β-amino-4-deoxypodophyllotoxin and 4β-amino-4-demethyl-4-deoxypodophyllotoxin. Chemical Research in Chinese University, 21, 1064–1066. Suche in Google Scholar
[6] Cho, S. J., Kashiwada, Y., Bastow, K. F., Cheng, Y. C., & Lee, K. H. (1996a). Antitumor agents. 164. Podophenazine, 2″,3″-dichloropodophenazine, benzopodophenazine, and their 4β-p-nitroaniline derivatives as novel DNA topoisomerase II inhibitors. Journal of Medicinal Chemistry, 39, 1396–1402. DOI: 10.1021/jm950548u. http://dx.doi.org/10.1021/jm950548u10.1021/jm950548uSuche in Google Scholar
[7] Cho, S. J., Tropsha, A., Suffness, M., Cheng, Y. C., & Lee, K. H. (1996b). Antitumor agents. 163. Three-dimensional quantitative structure-activity relationship study of 4′-Odemethylepipodophyllotoxin analogs using the modified CoMFA/q2-GRS approach. Journal of Medicinal Chemistry, 39, 1383–1395. DOI: 10.1021/jm9503052. http://dx.doi.org/10.1021/jm950305210.1021/jm9503052Suche in Google Scholar
[8] Gordaliza, M., García, P. A., Miguel del Corral, J. M., Castro, M. A., & Gómez-Zurita, M. A. (2004). Podophyllotoxin: distribution, sources, applications and new cytotoxic derivatives. Toxicon, 44, 441–459. document DOI: 10.1016/j.toxicon.2004.05.008. http://dx.doi.org/10.1016/j.toxicon.2004.05.00810.1016/j.toxicon.2004.05.008Suche in Google Scholar
[9] Hande, K. R. (1998). Etoposide: four decades of development of a topoisomerase II inhibitor. European Journal of Cancer, 34, 1514–1521. DOI: 10.1016/S0959-8049(98)00228-7. http://dx.doi.org/10.1016/S0959-8049(98)00228-710.1016/S0959-8049(98)00228-7Suche in Google Scholar
[10] Hansen, H. F., Jensen, R. B., Willumsen, A. M., Nørskov-Lauritsen, N., Ebbesen, P., Nielsen, P. E., & Buchardt, O. (1993). New compounds related to podophyllotoxin and congeners: synthesis, structure elucidation and biological testing. Acta Chemica Scandinavica, 47, 1190–1200. DOI: 10.3891/acta.chem.scand.47-1190. http://dx.doi.org/10.3891/acta.chem.scand.47-119010.3891/acta.chem.scand.47-1190Suche in Google Scholar
[11] Kamal, A., Gayatri, N. L., & Rao, N. V. (1998). Facile and improved synthesis of 4β-aminopodophyllotoxin congeners. Bioorganic & Medicinal Chemistry Letters, 8, 3097–3100. DOI: 10.1016/S0960-894X(98)00570-8. http://dx.doi.org/10.1016/S0960-894X(98)00570-810.1016/S0960-894X(98)00570-8Suche in Google Scholar
[12] Kamal, A., Gayatri, N. L., Reddy, D. R., Reddy, P. S. M., Arifuddin, M., Dastidar, S. G., Kondapi, A. K., & Rajkumar, M. (2005). Synthesis and biological evaluation of new 4β-anilino and 4β-imido-substituted podophyllotoxin congeners. Bioorganic & Medicinal Chemistry, 13, 6218–6225. DOI: 10.1016/j.bmc.2005.06.032. http://dx.doi.org/10.1016/j.bmc.2005.06.03210.1016/j.bmc.2005.06.032Suche in Google Scholar
[13] Kamal, A., Kumar, B. A., Arifuddin, M., & Dastidar, S. G. (2003). Synthesis of 4β-amido and 4β-sulphonamido analogues of podophyllotoxin as potential antitumour agents. Bioorganic & Medicinal Chemistry, 11, 5135–5142. DOI: 10.1016/j.bmc.2003.08.019. http://dx.doi.org/10.1016/j.bmc.2003.08.01910.1016/j.bmc.2003.08.019Suche in Google Scholar
[14] Kamal, A., Laxminarayana, B., & Gayatri, N. L. (1997). Stereo and chemoselective enzymatic reduction of azido functionality: Synthesis of 4β-aminopodophyllotoxin congeners by Baker’s yeast. Tetrahedron Letters, 38, 6871–6874. DOI: 10.1016/S0040-4039(97)01582-7. http://dx.doi.org/10.1016/S0040-4039(97)01582-710.1016/S0040-4039(97)01582-7Suche in Google Scholar
[15] Keller-Juslen, C., Kuhn, M., Von Wartburg, A., & Staehelin, H. (1971). Mitosis-inhibiting natural products. 24. Synthesis and antimitotic activity of glycosidic lignan derivatives related to podophyllotoxin. Journal of Medicinal Chemistry, 14, 936–940. DOI: 10.1021/jm00292a012. http://dx.doi.org/10.1021/jm00292a01210.1021/jm00292a012Suche in Google Scholar
[16] Li, G. Z., Feng, R. H., Chen, L. B., Feng, J. T., Tian, X., & Zhang, X. (2006). Synthesis and antifeedant activity of 4β-halogenated-4-deoxypodophyllotoxin and 4β-amino-4-deoxypodophyllotoxin. Chinese Journal of Pesticide Science, 8, 87–90. http://dx.doi.org/10.1007/BF0287695110.1007/BF02876951Suche in Google Scholar
[17] Liu, Y. Q., Yang, L., & Tian, X. (2007). Podophyllotoxin: Current perspectives. Current Bioactive Compounds, 3, 37–66. DOI: 10.2174/157340707780126499. http://dx.doi.org/10.2174/15734070778012649910.2174/157340707780126499Suche in Google Scholar
[18] Roulland, E., Magiatis, P., Arimondo, P., Bertounesque, E., & Monneret, C. (2002). Hemi-synthesis and biological activity of new analogues of podophyllotoxin. Bioorganic & Medicinal Chemistry, 10, 3463–3471. DOI: 10.1016/S0968-0896(02)00255-9. http://dx.doi.org/10.1016/S0968-0896(02)00255-910.1016/S0968-0896(02)00255-9Suche in Google Scholar
[19] Tian, X., Wang, Y. G., Yang, M. G., & Chen, Y. Z. (1997). Synthesis and antitumor activity of spin labeled derivatives of podophyllotoxin. Life Sciences, 60, 511–517. DOI: 10.1016/S0024-3205(96)00689-3. http://dx.doi.org/10.1016/S0024-3205(96)00689-310.1016/S0024-3205(96)00689-3Suche in Google Scholar
[20] Wang, Z. Q., Kuo, Y. H., Schnur, D., Bowen, J. P., Liu, S. Y., Han, F. S., Chang, J. Y., Cheng, Y. C., & Lee, K. H. (1990). Antitumor agents. 113. New 4β-arylamino derivatives of 4′-O-demethylepipodophyllotoxin and related compounds as potent inhibitors of human DNA topoisomerase II. Journal of Medicinal Chemistry, 33, 2660–2666. DOI: 10.1021/jm00171a050. http://dx.doi.org/10.1021/jm00171a05010.1021/jm00171a050Suche in Google Scholar PubMed
[21] Wilstermann, A. M., Bender, R. P., Godfrey, M., Choi, S., Anklin, C., Berkowitz, D. B., Osheroff, N., & Graves, D. E. (2007). Topoisomerase II-drug interaction domains: Identification of substituents on etoposide that interact with the enzyme. Biochemistry, 46, 8217–8225. DOI: 10.1021/bi700272u. http://dx.doi.org/10.1021/bi700272u10.1021/bi700272uSuche in Google Scholar PubMed PubMed Central
[22] Xu, H., Zhang, L., & Tian, X. (2008). A highly improved synthesis of 4β-aminopodophyllotoxin. Chinese Journal of Organic Chemistry, 28, 1243–1246. Suche in Google Scholar
[23] Yu, Y. P., Chen, S. Y., Wang, Y. G., & Chen, Y. Z. (1999). A facile and efficient synthesis of 4β-aminopodophyllotoxins. Tetrahedron Letters, 40, 1967–1970. DOI: 10.1016/S0040-4039(99)00125-2. http://dx.doi.org/10.1016/S0040-4039(99)00125-210.1016/S0040-4039(99)00125-2Suche in Google Scholar
© 2010 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Multi-elemental analysis of marine sediment reference material MESS-3: one-step microwave digestion and determination by high resolution inductively coupled plasma-mass spectrometry (HR-ICP-MS)
- Use of a diazocoupling reaction for sensitive and selective spectrophotometeric determination of furosemide in spiked human urine and pharmaceuticals
- Flow injection spectrofluorimetric determination of iron(III) in water using salicylic acid
- Liquid chromatographic determination of meloxicam in serum after solid phase extraction
- Antioxidant, antimicrobial, and tyrosinase inhibition activities of acetone extract of Ascophyllum nodosum
- Preparation and properties of surfactant-bacillolysin ion-pair in organic solvents
- Comparative evaluation of critical operating conditions for a tubular catalytic reactor using thermal sensitivity and loss-of-stability criteria
- Impact of ionic strength on adsorption capacity of chromatographic particles employed in separation of monoclonal antibodies
- Activity and regenerability of dealuminated zeolite Y in liquid phase alkylation of benzene with 1-alkene
- Polysaccharide from Anacardium occidentale L. tree gum (Policaju) as a coating for Tommy Atkins mangoes
- In vitro bioactivity and crystallization behavior of bioactive glass in the system SiO2-CaO-Al2O3-P2O5-Na2O-MgO-CaF2
- Synthesis of brushite nanoparticles at different temperatures
- Synthesis of 1-phenylbut-3-ene-1,2-dione and its attempted radical polymerization
- Vibrational spectroscopic and conformational studies of 1-(4-pyridyl)piperazine
- Theoretical binding affinities and spectra of complexes formed by a cyclic β-peptoid with amino acids
- Visual spectroscopy detection of triclosan
- Euphorbia antisyphilitica residues as a new source of ellagic acid
- A novel, stereoselective and practical protocol for the synthesis of 4β-aminopodophyllotoxins
- A novel method for N-alkylation of aliphatic amines with ethers over γ-Al2O3
Artikel in diesem Heft
- Multi-elemental analysis of marine sediment reference material MESS-3: one-step microwave digestion and determination by high resolution inductively coupled plasma-mass spectrometry (HR-ICP-MS)
- Use of a diazocoupling reaction for sensitive and selective spectrophotometeric determination of furosemide in spiked human urine and pharmaceuticals
- Flow injection spectrofluorimetric determination of iron(III) in water using salicylic acid
- Liquid chromatographic determination of meloxicam in serum after solid phase extraction
- Antioxidant, antimicrobial, and tyrosinase inhibition activities of acetone extract of Ascophyllum nodosum
- Preparation and properties of surfactant-bacillolysin ion-pair in organic solvents
- Comparative evaluation of critical operating conditions for a tubular catalytic reactor using thermal sensitivity and loss-of-stability criteria
- Impact of ionic strength on adsorption capacity of chromatographic particles employed in separation of monoclonal antibodies
- Activity and regenerability of dealuminated zeolite Y in liquid phase alkylation of benzene with 1-alkene
- Polysaccharide from Anacardium occidentale L. tree gum (Policaju) as a coating for Tommy Atkins mangoes
- In vitro bioactivity and crystallization behavior of bioactive glass in the system SiO2-CaO-Al2O3-P2O5-Na2O-MgO-CaF2
- Synthesis of brushite nanoparticles at different temperatures
- Synthesis of 1-phenylbut-3-ene-1,2-dione and its attempted radical polymerization
- Vibrational spectroscopic and conformational studies of 1-(4-pyridyl)piperazine
- Theoretical binding affinities and spectra of complexes formed by a cyclic β-peptoid with amino acids
- Visual spectroscopy detection of triclosan
- Euphorbia antisyphilitica residues as a new source of ellagic acid
- A novel, stereoselective and practical protocol for the synthesis of 4β-aminopodophyllotoxins
- A novel method for N-alkylation of aliphatic amines with ethers over γ-Al2O3