Abstract
Binding affinities of a cyclic β-peptoid to amino acids were studied using the density functional theory (DFT) at the B3LYP/6-311G(d,p) level after the basis set superior error (BSSE). The host molecule possesses binding ability to amino acids since the binding energies of the complexes formed are negative. The complexes were stabilized via hydrogen bonds between the host and the guest molecules. Based on the B3LYP/6-31G(d) optimized geometries, electronic spectra of the complexes were calculated using the INDO/CIS method. 13C NMR spectra and nucleus-independent chemical shift (NICS) values of the complexes were computed at the B3LYP/6-31G(d) level. Carbon atoms in the carboxyl groups of the complexes are shifted downfield relative to those of the host. Some complexes exhibit aromaticity although the host shows anti-aromaticity. Formation of hydrogen bonds leads to cyclic current formation in these complexes.
[1] An, W., Shao, N., Bulusu, S., & Zeng, X. C. (2008). Ab initio calculation of carbon clusters. II. Relative stabilities of fullerene and nonfullerene C24. Journal of Chemical Physics, 128, 084301. DOI: 10.1063/1.2831917. http://dx.doi.org/10.1063/1.283191710.1063/1.2831917Search in Google Scholar
[2] Barron, A. E., & Zuckermann, R. N. (1999). Bioinspired polymeric materials: in-between proteins and plastics. Current Opinions in Chemical Biology, 3, 681–687. DOI: 10.1016/S1367-5931(99)00026-5. http://dx.doi.org/10.1016/S1367-5931(99)00026-510.1016/S1367-5931(99)00026-5Search in Google Scholar
[3] Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 98, 5648–5652. DOI: 10.1063/1.464913. http://dx.doi.org/10.1063/1.46491310.1063/1.464913Search in Google Scholar
[4] Chen, X., Teng, Q., Wu, S., & Xu, L. (2007). Theoretical studies on supramolecular complexes of anthyridone with various diaminopyridine derivatives. Indian Journal of Chemistry, 46A, 391–395. Search in Google Scholar
[5] Chen, Z., & King, R. (2005). Spherical aromaticity: recent work on fullerenes, polyhedral boranes, and related structures. Chemical Reviews, 105, 3613–3642. DOI: 10.1021/cr0300892. http://dx.doi.org/10.1021/cr030089210.1021/cr0300892Search in Google Scholar
[6] Chen, Z., Wannere, C. S., Corminboeuf, C., Puchta, R., & von Ragué Schleyer, P. (2005). Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chemical Reviews, 105, 3842–3888. DOI: 10.1021/cr030088+. http://dx.doi.org/10.1021/cr030088+10.1021/cr030088+Search in Google Scholar
[7] Cyrański, M. K., Krygowski, T. M., Wisiorowski, M., van Eikema Hommes, N. J. R., & von Ragué Schleyer, P. (1998). Global and local aromaticity in porphyrins: An analysis based on molecular geometries and nucleus-independent chemical shifts. Angewandte Chemie International Edition, 37, 177–180. DOI: 10.1002/(SICI)1521-3773(19980202)37:1/2<177::AID-ANIE177>3.0.CO;2-H. http://dx.doi.org/10.1002/(SICI)1521-3773(19980202)37:1/2<177::AID-ANIE177>3.0.CO;2-H10.1002/(SICI)1521-3773(19980202)37:1/2<177::AID-ANIE177>3.0.CO;2-HSearch in Google Scholar
[8] Dahiya, R. (2008). Synthesis and biological activity of a cyclic hexapeptide from Dianthus superbus. Chemical Papers, 62, 527–535. DOI: 10.2478/s11696-008-0052-9. http://dx.doi.org/10.2478/s11696-008-0052-910.2478/s11696-008-0052-9Search in Google Scholar
[9] Darensbourg, D. J., Phelps, A. L., Le Gall, N., & Jia, L. (2004). Mechanistic studies of the copolymerization reaction of aziridines and carbon monoxide to produce poly-β-peptoids. Journal of the American Chemical Society, 126, 13808–13815. DOI: 10.1021/ja046225h. http://dx.doi.org/10.1021/ja046225h10.1021/ja046225hSearch in Google Scholar
[10] Ding, L., Ding, Y. Q., Teng, Q. W., & Wang, K. (2008). Electronic structures and spectroscopy of luminescent paraphenylenevinylene oligomers. Chinese Journal of Chemistry, 26, 97–100. DOI: 10.1002/cjoc.200890044. http://dx.doi.org/10.1002/cjoc.20089004410.1002/cjoc.200890044Search in Google Scholar
[11] Ding, L., Ding, Y. Q., Teng, Q. W., & Wang, K. (2007). The effect of substituents on the fluorescent properties of paraphenylenevinylene. Journal of the Chinese Chemical Society, 54, 853–860. 10.1002/jccs.200700124Search in Google Scholar
[12] Ding, Y., Gao, P., Qin, L., & Teng, Q. (2009). Investigation on stabilities and spectroscopy of C80O2 based on C80(D 5d) using density function theory. International Journal of Quantum Chemistry, 109, 693–700. DOI: 10.1002/qua.21885. http://dx.doi.org/10.1002/qua.2188510.1002/qua.21885Search in Google Scholar
[13] Dyakov, Yu. A., Mebel, A. M., Lin, S. H., Lee, Y. T., & Ni, C.-K. (2006). Acetylene elimination in photodissociation of neutral azulene and its cation: an ab initio and RRKM study. Journal of the Chinese Chemical Society, 53, 161–168. 10.1002/jccs.200600018Search in Google Scholar
[14] Frackenpohl, J., Arvidsson, P. I., Schreiber, J. V., & Seebach, D. (2001). The outstanding biological stability of β- and γ-peptides toward proteolytic enzymes: an in vitro investigation with fifteen peptidases. ChemBioChem, 2, 445–455. DOI: 10.1002/1439-7633(20010601)2:6<445::AIDCBIC445> 3.0.CO;2-R. http://dx.doi.org/10.1002/1439-7633(20010601)2:6<445::AID-CBIC445>3.0.CO;2-R10.1002/1439-7633(20010601)2:6<445::AID-CBIC445>3.0.CO;2-RSearch in Google Scholar
[15] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A, Vreven, T., Jr., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H. P., Cross, J. B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., & Pople, J. A. (2003). Gaussian 03, Revision B.01 [computer software]. Pittsburgh, PA, USA: Gaussian, Inc. Search in Google Scholar
[16] Geerlings, P., De Proft, F., & Langenaeker, W. (2003). Conceptual density functional theory. Chemical Reviews, 103, 1793–1874. DOI: 10.1021/cr990029p. http://dx.doi.org/10.1021/cr990029p10.1021/cr990029pSearch in Google Scholar
[17] Gellman, S. H. (1998). Foldamers: a manifesto. Accounts of Chemical Research, 31, 173–180. DOI: 10.1021/ar960298r. http://dx.doi.org/10.1021/ar960298r10.1021/ar960298rSearch in Google Scholar
[18] Gill, P. M. W., Johnson, B. G., & Pople, J. A. (1993). A standard grid for density functional calculations. Chemical Physics Letters, 209, 506–512. DOI: 10.1016/0009-2614(93)80125-9. http://dx.doi.org/10.1016/0009-2614(93)80125-910.1016/0009-2614(93)80125-9Search in Google Scholar
[19] Golabczak, J., Strakowska, J., & Konstantynowicz, A. (2005). Dynamics of evening primrose protein hydrolysis. Chemical Papers, 59, 409–412. Search in Google Scholar
[20] Greenwood, N. N., & Earnshaw, A. (1997). Chemistry of the elements (2nd ed.). Oxford, UK: Butterworth-Heinemann. Search in Google Scholar
[21] Guichard, G. (2000). Solid-phase synthesis of pseudopeptides and oligomeric peptide backbone mimetics. In S. A. Kates, & F. Albericio (Eds.), Solid-phase synthesis: a practical guide (pp. 649–704). New York, NY, USA: Marcel Dekker. Search in Google Scholar
[22] Hamper, B. C., Kolodziej, S. A., Scates, A. M., Smith, R. G., & Cortez, E. (1998). Solid phase synthesis of β-peptoids: Nsubstituted β-aminopropionic acid oligomers. Journal of Organic Chemistry, 63, 708–718 DOI: 10.1021/jo971675w. http://dx.doi.org/10.1021/jo971675w10.1021/jo971675wSearch in Google Scholar
[23] Janjić, G. V., Milčić, M. K., & Zarić, S. D. (2009). Intramolecular MLOH/π and MLNH/π interactions in crystal structures of metal complexes. Chemical Papers, 63, 298–305. DOI: 10.2478/s11696-009-0020-z. http://dx.doi.org/10.2478/s11696-009-0020-z10.2478/s11696-009-0020-zSearch in Google Scholar
[24] Kirshenbaum, K., Zuckermann, R. N., & Dill, K. A. (1999). Designing polymers that mimic biomolecules. Current Opinion in Structural Biology, 9, 530–535. DOI: 10.1016/S0959-440x(99)80075-x. http://dx.doi.org/10.1016/S0959-440X(99)80075-X10.1016/S0959-440X(99)80075-XSearch in Google Scholar
[25] Koleva, B. B., Kolev, T. M., & Todorov, S. (2007). Structural and spectroscopic analysis of dipeptide l-methionyl-glycine and its hydrochloride. Chemical Papers, 61, 490–496. DOI: 10.2478/s11696-007-0067-7. http://dx.doi.org/10.2478/s11696-007-0067-710.2478/s11696-007-0067-7Search in Google Scholar
[26] Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785–789. DOI: 10.1103/PhysRevB.37.785. http://dx.doi.org/10.1103/PhysRevB.37.78510.1103/PhysRevB.37.785Search in Google Scholar
[27] Lu, X., & Chen, Z. (2005). Curved pi-conjugation, aromaticity, and the related chemistry of small fullerenes (<C60) and single-walled carbon nanotubes. Chemical Reviews, 105, 3643–3696. DOI: 10.1021/cr030093d. http://dx.doi.org/10.1021/cr030093d10.1021/cr030093dSearch in Google Scholar
[28] Martinek, T. A., & Fulop, F. (2003). Side-chain control of β-peptide secondary structures. European Journal of Biochemistry, 270, 3657–3666. DOI: 10.1046/j.1432-1033.2003.03756.x. http://dx.doi.org/10.1046/j.1432-1033.2003.03756.x10.1046/j.1432-1033.2003.03756.xSearch in Google Scholar
[29] Mejías, X., Feliu, L., Planas, M., & Bardají, E. (2006). Synthesis of nucleobase-functionalized β-peptoids and β-peptoid hybrids. Tetrahedron Letters, 47, 8069–8071 DOI: 10.1016/j.tetlet.2006.09.057 http://dx.doi.org/10.1016/j.tetlet.2006.09.05710.1016/j.tetlet.2006.09.057Search in Google Scholar
[30] Nozaki, K. (2006). Theoretical studies on photophysical properties and mechanism of phosphorescence in [fac-Ir(2-phenylpyridine) 3]. Journal of the Chinese Chemical Society, 53, 101–112. 10.1002/jccs.200600013Search in Google Scholar
[31] Parr, R. G., & Yang, W. (1989). Density-functional theory of atoms and molecules. New York, NY, USA: Oxford University Press. Search in Google Scholar
[32] Patchkovskii, S., & Thiel, W. (2000). Nucleus-independent chemical shifts from semiempirical calculations. Journal of Molecular Modeling, 6, 67–75. DOI: 10.1007/PL00010736. http://dx.doi.org/10.1007/PL0001073610.1007/PL00010736Search in Google Scholar
[33] Price, J. L., Horne, W. S., & Gellman, S. H. (2007). Discrete heterogeneous quaternary structure formed by α/β-peptide foldamers and α-peptides. Journal of the American Chemical Society, 129, 6376–637 DOI: 10.1021/ja071203r. http://dx.doi.org/10.1021/ja071203r10.1021/ja071203rSearch in Google Scholar
[34] Qi, L., Teng, Q., Wu, S., & Liu, Z. (2005). Molecular recognition and “on-off” switching of 30-crown-10 to biological polar guest molecules. Chemical Journal of Chinese Universities, 26, 1909–1912. Search in Google Scholar
[35] Ren, X., Miao, Y., Li, N., & Wu, S. (2009). Theoretical binding affinities and spectroscopy of complexes formed by cyclobis(paraquat-p-anthracene) with amino acids. Indian Journal of Chemistry, 48A, 623–630. Search in Google Scholar
[36] Ridley, J., & Zerner, M. C. (1973). An intermediate neglect of differential overlap technique for spectroscopy: pyrrole and the azines. Theoretica Chimica Acta, 32, 111–134. DOI: 10.1007/BF00528484. http://dx.doi.org/10.1007/BF0052848410.1007/BF00528484Search in Google Scholar
[37] Roy, O., Faure, S., Thery, V., Didierjean, C., & Taillefumier, C. (2008). Cyclic β-peptoids. Organic Letters, 10, 921–924. DOI: 10.1021/ol7030763. http://dx.doi.org/10.1021/ol703076310.1021/ol7030763Search in Google Scholar
[38] Schreiber, J. V., Frackenpohl, J., Moser, F., Fleischmann, T., Kohler, H. P. E., & Seebach, D. (2002). On the biodegradation of beta-peptides. ChemBioChem, 3, 424–432. DOI: 10.1002/1439-7633 (20020503)3:5<424::AID-CBIC424>3.0.CO;2-0. http://dx.doi.org/10.1002/1439-7633(20020503)3:5<424::AID-CBIC424>3.0.CO;2-010.1002/1439-7633(20020503)3:5<424::AID-CBIC424>3.0.CO;2-0Search in Google Scholar
[39] Seebach, D., Hook, D. F., & Glättli, A. (2006). Helices and other secondary structures of β- and γ-peptides. Biopolymers: Peptide Science, 84, 23–37. DOI: 10.1002/bip.20391. http://dx.doi.org/10.1002/bip.2039110.1002/bip.20391Search in Google Scholar PubMed
[40] Smieško, M., & Remko, M. (2005). Structure and gas-phase stability of Zn(II)-molecule complexes. Chemical Papers, 59, 310–315. Search in Google Scholar
[41] Su, N., Guo, Q., & Wu, S. (2008). Stability and spectroscopic studies on oxygenated armchair SWCNTs. Indian Journal of Chemistry, 47A, 1473–1479. Search in Google Scholar
[42] Sun, H., Teng, Q., Wu, S., & Wang, Z. (2006). Investigations on UV and IR spectra for C80On (n = 1, 2). Indian Journal of Chemistry, 45A, 1345–1350. Search in Google Scholar
[43] Sun, H., Wu, S., & Ren, X. (2008a). Theoretical studies on stabilities and spectroscopy of C84O. Journal of Molecular Structure: THEOCHEM, 855, 6–12. DOI: 10.1016/j.theochem.2007.12.043 http://dx.doi.org/10.1016/j.theochem.2007.12.04310.1016/j.theochem.2007.12.043Search in Google Scholar
[44] Sun, H., Yun, X., Wu, S., & Teng, Q. (2008b). Theoretical studies on stabilities, 13C and 3He NMR spectroscopy of C84O derived from C84(D 2d). Journal of Molecular Structure: THEOCHEM, 868, 71–77. DOI: 10.1016/j.theochem.2008.08.007. http://dx.doi.org/10.1016/j.theochem.2008.08.00710.1016/j.theochem.2008.08.007Search in Google Scholar
[45] Suresh, S. J., & Naik, V. M. (2000). Hydrogen bond thermodynamic properties of water from dielectric constant data. Journal of Chemical Physics, 113, 9727–9732. DOI: 10.1063/1.1320822 http://dx.doi.org/10.1063/1.132082210.1063/1.1320822Search in Google Scholar
[46] Teng, Q. W., & Wu, S. (2006). Investigation on UV and IR spectra of C74(BN)2. Chinese Journal of Chemistry, 24, 419–422. DOI: 10.1002/cjoc.200690080. http://dx.doi.org/10.1002/cjoc.20069008010.1002/cjoc.200690080Search in Google Scholar
[47] Teng, Q., & Wu, S. (2005a). Stability and electronic spectroscopy of isomers for C74Si2. Journal of Molecular Structure: THEOCHEM, 756, 103–107. DOI: 10.1016/j.theochem.2005.08.016. http://dx.doi.org/10.1016/j.theochem.2005.08.01610.1016/j.theochem.2005.08.016Search in Google Scholar
[48] Teng, Q., & Wu, S. (2005b). An INDO study on electronic structures and spectra of C79H2. Journal of Molecular Structure: THEOCHEM, 719, 47–51. DOI: 10.1016/j.theochem.2004.11.045. http://dx.doi.org/10.1016/j.theochem.2004.11.04510.1016/j.theochem.2004.11.045Search in Google Scholar
[49] Teng, Q., & Wu, S. (2005c). Electronic structures and spectra for triepoxides of fullerene C78O3. International Journal of Quantum Chemistry, 104, 279–285. DOI: 10.1002/qua.20604. http://dx.doi.org/10.1002/qua.2060410.1002/qua.20604Search in Google Scholar
[50] von Ragué Schleyer, P., Maerker, C., Dransfeld, A., Jiao, H., & van Eikema Hommes, N. J. R. (1996). Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. Journal of the American Chemical Society, 118, 6317–6318. DOI: 10.1021/ja960582d. http://dx.doi.org/10.1021/ja960582d10.1021/ja960582dSearch in Google Scholar PubMed
[51] Wang, G. W., Saunders, M., Khong, A., & Cross, R. J. (2000). A new method for separating the isomeric C84 fullerenes. Journal of the American Chemical Society, 122, 3216–3217. DOI: 10.1021/ja994270x. http://dx.doi.org/10.1021/ja994270x10.1021/ja994270xSearch in Google Scholar
[52] Wang, Z., & Wu, S. (2007). Binding affinities and spectra of complexes formed by dehydrotetrapyrido[20]annulene and small molecules. Chemical Papers, 61, 313–320. DOI: 10.2478/s11696-007-0039-y. http://dx.doi.org/10.2478/s11696-007-0039-y10.2478/s11696-007-0039-ySearch in Google Scholar
[53] Wolinski, K., Hinton, J., & Pulay, P. (1990). Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. Journal of the American Chemical Society, 112, 8251–8260. DOI: 10.1021/ja00179 a005. http://dx.doi.org/10.1021/ja00179a005Search in Google Scholar
[54] Wu, S., & Teng, Q. (2006). Studies on equilibrium geometries and electronic spectra for C78O4. International Journal of Quantum Chemistry, 106, 526–532. DOI: 10.1002/qua.20761. http://dx.doi.org/10.1002/qua.2076110.1002/qua.20761Search in Google Scholar
[55] Wu, S., Teng, Q. W., & Chen, S. C. (2007). Semi-empirical and DFT studies on structures and spectra for C78(CH2)2. Chinese Journal of Chemistry, 25, 149–153. DOI: 10.1002/cjoc.200790030. http://dx.doi.org/10.1002/cjoc.20079003010.1002/cjoc.200790030Search in Google Scholar
[56] Yan, C., Su, N., & Wu, S. (2007). The structure and spectra of H-bonded complexes formed by 2-pyridone. Russian Journal of Physical Chemistry A, 81, 1980–1985. DOI: 10.1134/S0036024407120138. http://dx.doi.org/10.1134/S003602440712013810.1134/S0036024407120138Search in Google Scholar
[57] Yu, X., Yi, B., Yu, W., & Wang, X. (2008). DFT-based quantum theory QSPR studies of molar heat capacity and molar polarization of vinyl polymers. Chemical Papers, 62, 623–629. DOI: 10.2478/s11696-008-0066-3. http://dx.doi.org/10.2478/s11696-008-0066-310.2478/s11696-008-0066-3Search in Google Scholar
[58] Zhang, W., Wu, S., & Wen, X. (2007). Theoretical exploration on stable geometries of C78O6 based on C 2v–C78. Indian Journal of Chemistry, 46A, 1911–1916. Search in Google Scholar
[59] Zhang, Y., Li, T., & Teng, Q. W. (2008). Stabilities and spectroscopy of hydrogen bonding complexes formed by 2,4-bis(acrylamido)pyrimidines. Chinese Journal of Chemistry, 26, 1567–1572. DOI: 10.1002/cjoc.200890283. http://dx.doi.org/10.1002/cjoc.20089028310.1002/cjoc.200890283Search in Google Scholar
[60] Zhao, H., Zhou, J., Hu, L., & Teng, Q. (2009). Theoretical studies on electronic structures and NMR spectra of oligo(4 vinylpyridine). Chinese Journal of Chemistry, 27, 1687–1691. DOI: 10.1002/cjoc.200990283. http://dx.doi.org/10.1002/cjoc.20099028310.1002/cjoc.200990283Search in Google Scholar
[61] Zhu, L., Sun, Y., Wang, Q., & Wu, S. (2009). Progress in binding affinities of metal porphyrins to heterocycles and DNA. Chinese Journal of Organic Chemistry, 29, 1700–1707. Search in Google Scholar
[62] Zhu, L. L., Teng, Q.W., & Wu, S. (2006). Theoretical studies on hydrogen-bonding complexes of melamine and cyclotrione. Chemical Journal of Chinese Universities, 27, 680–683. Search in Google Scholar
© 2010 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Multi-elemental analysis of marine sediment reference material MESS-3: one-step microwave digestion and determination by high resolution inductively coupled plasma-mass spectrometry (HR-ICP-MS)
- Use of a diazocoupling reaction for sensitive and selective spectrophotometeric determination of furosemide in spiked human urine and pharmaceuticals
- Flow injection spectrofluorimetric determination of iron(III) in water using salicylic acid
- Liquid chromatographic determination of meloxicam in serum after solid phase extraction
- Antioxidant, antimicrobial, and tyrosinase inhibition activities of acetone extract of Ascophyllum nodosum
- Preparation and properties of surfactant-bacillolysin ion-pair in organic solvents
- Comparative evaluation of critical operating conditions for a tubular catalytic reactor using thermal sensitivity and loss-of-stability criteria
- Impact of ionic strength on adsorption capacity of chromatographic particles employed in separation of monoclonal antibodies
- Activity and regenerability of dealuminated zeolite Y in liquid phase alkylation of benzene with 1-alkene
- Polysaccharide from Anacardium occidentale L. tree gum (Policaju) as a coating for Tommy Atkins mangoes
- In vitro bioactivity and crystallization behavior of bioactive glass in the system SiO2-CaO-Al2O3-P2O5-Na2O-MgO-CaF2
- Synthesis of brushite nanoparticles at different temperatures
- Synthesis of 1-phenylbut-3-ene-1,2-dione and its attempted radical polymerization
- Vibrational spectroscopic and conformational studies of 1-(4-pyridyl)piperazine
- Theoretical binding affinities and spectra of complexes formed by a cyclic β-peptoid with amino acids
- Visual spectroscopy detection of triclosan
- Euphorbia antisyphilitica residues as a new source of ellagic acid
- A novel, stereoselective and practical protocol for the synthesis of 4β-aminopodophyllotoxins
- A novel method for N-alkylation of aliphatic amines with ethers over γ-Al2O3
Articles in the same Issue
- Multi-elemental analysis of marine sediment reference material MESS-3: one-step microwave digestion and determination by high resolution inductively coupled plasma-mass spectrometry (HR-ICP-MS)
- Use of a diazocoupling reaction for sensitive and selective spectrophotometeric determination of furosemide in spiked human urine and pharmaceuticals
- Flow injection spectrofluorimetric determination of iron(III) in water using salicylic acid
- Liquid chromatographic determination of meloxicam in serum after solid phase extraction
- Antioxidant, antimicrobial, and tyrosinase inhibition activities of acetone extract of Ascophyllum nodosum
- Preparation and properties of surfactant-bacillolysin ion-pair in organic solvents
- Comparative evaluation of critical operating conditions for a tubular catalytic reactor using thermal sensitivity and loss-of-stability criteria
- Impact of ionic strength on adsorption capacity of chromatographic particles employed in separation of monoclonal antibodies
- Activity and regenerability of dealuminated zeolite Y in liquid phase alkylation of benzene with 1-alkene
- Polysaccharide from Anacardium occidentale L. tree gum (Policaju) as a coating for Tommy Atkins mangoes
- In vitro bioactivity and crystallization behavior of bioactive glass in the system SiO2-CaO-Al2O3-P2O5-Na2O-MgO-CaF2
- Synthesis of brushite nanoparticles at different temperatures
- Synthesis of 1-phenylbut-3-ene-1,2-dione and its attempted radical polymerization
- Vibrational spectroscopic and conformational studies of 1-(4-pyridyl)piperazine
- Theoretical binding affinities and spectra of complexes formed by a cyclic β-peptoid with amino acids
- Visual spectroscopy detection of triclosan
- Euphorbia antisyphilitica residues as a new source of ellagic acid
- A novel, stereoselective and practical protocol for the synthesis of 4β-aminopodophyllotoxins
- A novel method for N-alkylation of aliphatic amines with ethers over γ-Al2O3