Abstract
Zircon is a ubiquitous accessory mineral in silicic igneous rocks. We have carried out new zircon dissolution experiments to refine our understanding of Zr diffusion and zircon solubility in several rhyolitic melts. Zr diffusivity depends strongly on temperature and H2O content, and weakly on pressure and anhydrous melt composition. The diffusion data for each individual melt follows the Arrhenius relation. The dependence of Zr diffusivity on temperature, pressure, and melt composition (including H2O content) is modeled for different rhyolitic melts in this study and for the combined literature and our data. Our data on Zr concentration at zircon saturation in silicic melts show strong dependence on temperature and weak dependence on pressure and melt composition, and are somewhat off the trend based on existing zircon solubility models. The dissolution or growth rate of a freely falling zircon crystal in a specific hydrous rhyolitic melt is modeled. The controlling factors are mostly the temperature and Zr concentration in the melt. Typical zircon growth rate in wet rhyolitic melt is 0.01 to 1.0 μm/yr. The size of zircon crystals can be used to place limit on the cooling rate of its hosting magma. The presence of large indigenous zircon crystals in Bishop Tuff requires slow cooling of the Bishop Tuff magma chamber.
Special collection information can be found at http://www.minsocam.org/MSA/AmMin/special-collections.html.
Acknowledgments
We thank James Mungall and an anonymous reviewer for insightful and constructive comments. This work was supported by U.S. NSF grants EAR-0838127, EAR-1019440, and EAR-1524473. The electron microprobe at the University of Michigan was purchased with NSF grant EAR-9911352.
References Cited
Baker, D.R., and Watson, E.B. (1988) Diffusion of major and trace elements in compositionally complex Cl- and F-bearing silicate melts. Journal of Non-Crystalline Solids, 102, 62–70.10.1016/0022-3093(88)90113-5Suche in Google Scholar
Baker, D.R., Conte, A.M., Freda, C., and Ottolini, L. (2002) The effect of halogens on Zr diffusion and zircon dissolution in hydrous metaluminous granitic melts. Contributions to Mineralogy and Petrology, 142, 666–678.10.1007/s00410-001-0328-3Suche in Google Scholar
Behrens, H., and Hahn, M. (2009) Trace element diffusion and viscous flow in potassium-rich trachytic and phonolitic melts. Chemical Geology, 259, 63–77.10.1016/j.chemgeo.2008.10.014Suche in Google Scholar
Bindeman, I.N. (2003) Crystal sizes in evolving silicic magma chambers. Geology, 31, 367–370.10.1130/0091-7613(2003)031<0367:CSIESM>2.0.CO;2Suche in Google Scholar
Boehnke, P., Watson, E.B., Trail, D., Harrison, T.M., and Schmitt, A.K. (2013) Zircon saturation re-visited. Chemical Geology, 351, 324–334.10.1016/j.chemgeo.2013.05.028Suche in Google Scholar
Chen, Y., and Zhang, Y. (2008) Olivine dissolution in basaltic melt. Geochimica et Cosmochimica Acta, 72, 4756–4777.10.1016/j.gca.2008.07.014Suche in Google Scholar
Chen, Y., and Zhang, Y. (2009) Clinopyroxene dissolution in basaltic melt. Geochimica et Cosmochimica Acta, 73, 5730–5747.10.1016/j.gca.2009.06.016Suche in Google Scholar
Crowley, J.L., Schoene, B., and Bowring, S.A. (2007) U-Pb dating of zircon in the Bishop Tuff at the millennial scale. Geology, 35, 1123–1126.10.1130/G24017A.1Suche in Google Scholar
Dickinson, J.E., and Hess, P.C. (1982) Zircon saturation in lunar basalts and granites. Earth and Planetary Science Letters, 57, 336–344.10.1016/0012-821X(82)90154-6Suche in Google Scholar
Dingwell, D.B. (1990) Effects of structural relaxation on cationic tracer diffusion in silicate melts. Chemical Geology, 82, 209–216.10.1016/0009-2541(90)90082-ISuche in Google Scholar
Dobson, P.F., Epstein, S., and Stolper, E.M. (1989) Hydrogen isotope fractionation between coexisting vapor and silicate glasses and melts at low pressure. Geochimica et Cosmochimica Acta, 53, 2723–2730.10.1016/0016-7037(89)90143-9Suche in Google Scholar
Ellison, A.J., and Hess, P.C. (1986) Solution behavior of +4 cations in high silica melts: Petrologic and geochemical implications. Contributions to Mineralogy and Petrology, 94, 343–351.10.1007/BF00371443Suche in Google Scholar
Eyring, H. (1936) Viscosity, plasticity, and diffusion as examples of absolute reaction rates. Journal of Chemical Physics, 4, 283–291.10.1063/1.1749836Suche in Google Scholar
Ganguly, J., Bhattacharya, R.N., and Chakraborty, S. (1988) Convolution effect in the determination of compositional profiles and diffusion coefficients by microprobe step scans. American Mineralogist, 73, 901–909.Suche in Google Scholar
Gualda, G.A.R., Ghiorso, M.S., Lemons, R.V., and Carley, T.L. (2012) Rhyolite-MELTS: a modified calibration of MEOLS optimized for silica-rich, fluid-bearing magmatic systems. Journal of Petrology, 53, 875–890.10.1093/petrology/egr080Suche in Google Scholar
Hanchar, J.M., and Hoskin, P.W.O., Eds. (2003) Zircon. Reviews in Mineralogy and Geochemistry, 53, 1–500.Suche in Google Scholar
Hanchar, J.M., and Watson, E.B. (2003) Zircon saturation thermometry. Reviews in Mineralogy and Geochemistry, 53, 89–112.10.1515/9781501509322-007Suche in Google Scholar
Harrison, T.M., and Watson, E.B. (1983) Kinetics of zircon dissolution and zirconium diffusion in granitic melts of variable water content. Contributions to Mineralogy and Petrology, 84, 66–72.10.1007/BF01132331Suche in Google Scholar
Hildreth, W. (1979) The Bishop Tuff: Evidence for the origin of compositional zonation in silicic magma chambers. Geological Society of America Special Paper, 180, 43–73.10.1130/SPE180-p43Suche in Google Scholar
Hildreth, W., and Wilson, C.J. (2007) Compositional zoning of the Bishop Tuff. Journal of Petrology, 48, 951–999.10.1093/petrology/egm007Suche in Google Scholar
Hui, H., and Zhang, Y. (2007) Toward a general viscosity equation for natural anhydrous and hydrous silicate melts. Geochimica et Cosmochimica Acta, 71, 403–416.10.1016/j.gca.2006.09.003Suche in Google Scholar
Hui, H., Zhang, Y., Xu, Z., and Behrens, H. (2008) Pressure dependence of the speciation of dissolved water in rhyolitic melts. Geochimica et Cosmochimica Acta, 72, 3229–3240.10.1016/j.gca.2008.03.025Suche in Google Scholar
Hui, H., Zhang, Y., Xu, Z., Del Gaudio, P., and Behrens, H. (2009) Pressure dependence of viscosity of rhyolitic melts. Geochimica et Cosmochimica Acta, 73, 3680–3693.10.1016/j.gca.2009.03.035Suche in Google Scholar
Keppler, H. (1993) Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks. Contributions to Mineralogy and Petrology, 114, 479–488.10.1007/BF00321752Suche in Google Scholar
Kerr, R.C. (1995) Convective crystal dissolution. Contributions to Mineralogy and Petrology, 121, 237–246.10.1007/BF02688239Suche in Google Scholar
Koepke, J., and Behrens, H. (2001) Trace element diffusion in andesitic melts: an application of synchrontron X-ray fluorescence analysis. Geochimica et Cosmochimica Acta, 65, 1481–1498.10.1016/S0016-7037(01)00550-6Suche in Google Scholar
Kushiro, I. (1980) Viscosity, density, and structure of silicate melts at high pressures, and their petrological applications. In R.B.Hargraves, Ed., Physics of Magmatic Processes, p. 93–120. Princeton University Press, New Jersey.10.1515/9781400854493.93Suche in Google Scholar
LaTourrette, T., Wasserburg, G.J., and Fahey, A.J. (1996) Self diffusion of Mg, Ca, Ba, Nd, Yb, Ti, Zr, and U in haplobasaltic melt. Geochimica et Cosmochimica Acta, 60, 1329–1340.10.1016/0016-7037(96)00015-4Suche in Google Scholar
Liu, Y., and Zhang, Y. (2000) Bubble growth in rhyolitic melt. Earth and Planetary Science Letters, 181, 251–264.10.1016/S0012-821X(00)00197-7Suche in Google Scholar
Liu, Y., Zhang, Y., and Behrens, H. (2005) Solubility of H2O in rhyolitic melts at low pressures and a new empirical model for mixed H2O-CO2 solubility in rhyolitic melts. Journal of Volcanology and Geothermal Research, 143, 219–235.10.1016/j.jvolgeores.2004.09.019Suche in Google Scholar
Lu, F., Anderson, A.T., and Davis, A.M. (1992) Melt inclusions and crystal-liquid separation in rhyolitic magma of the Bishop Tuff. Contributions to Mineralogy and Petrology, 110, 113–120.10.1007/BF00310885Suche in Google Scholar
Lundstrom, C.C. (2003) An experimental investigation of the diffusive infiltration of alkalis into partially molten peridotite: implications for mantle melting processes. Geochemistry Geophysics Geosystems, 4, doi:10.1029/2001GC000224.Suche in Google Scholar
Mungall, J.E. (2002) Empirical models relating viscosity and tracer diffusion in magmatic silicate melts. Geochimica et Cosmochimica Acta, 66, 125–143.10.1016/S0016-7037(01)00736-0Suche in Google Scholar
Mungall, J.E., and Dingwell, D.B. (1997) Actinide diffusion in a haplogranitic melt: Effects of pressure, water content, and pressure. Geochimica et Cosmochimica Acta, 61, 2237–2246.10.1016/S0016-7037(97)00084-7Suche in Google Scholar
Mungall, J.E., Dingwell, D.B., and Chaussidon, M. (1999) Chemical diffusivities of 18 trace elements in granitoid melts. Geochimica et Cosmochimica Acta, 63, 2599–2610.10.1016/S0016-7037(99)00209-4Suche in Google Scholar
Nakamura, E., and Kushiro, I. (1998) Trace element diffusion in jadeite and diopside melts at high pressures and its geochemical implication. Geochimica et Cosmochimica Acta, 62, 3151–3160.10.1016/S0016-7037(98)00223-3Suche in Google Scholar
Newman, S., Stolper, E.M., and Epstein, S. (1986) Measurement of water in rhyolitic glasses: calibration of an infrared spectroscopic technique. American Mineralogist, 71, 1527–1541.Suche in Google Scholar
Newman, S., Epstein, S., and Stolper, E.M. (1988) Water, carbon dioxide, and hydrogen isotopes in glasses from the ca. 1340 A. D. eruption of the Mono Craters, California: Constraints on degassing phenomena and initial volatile content. Journal of Volcanology and Geothermal Research, 35, 75–96.10.1016/0377-0273(88)90007-8Suche in Google Scholar
Ni, H., and Zhang, Y. (2008) H2O diffusion models in rhyolitic melt with new high pressure data. Chemical Geology, 250, 68–78.10.1016/j.chemgeo.2008.02.011Suche in Google Scholar
Ni, H., Behrens, H., and Zhang, Y. (2009) Water diffusion in dacitic melt. Geochimica et Cosmochimica Acta, 73, 3642–3655.10.1016/j.gca.2009.03.029Suche in Google Scholar
Reid, M.R., and Coath, C.D. (2000) In situ U-Pb ages of zircons from the Bishop Tuff: no evidence for long crystal residence times. Geology, 28, 443–446.10.1130/0091-7613(2000)28<443:ISUAOZ>2.0.CO;2Suche in Google Scholar
Robie, R.A., and Hemingway, B.S. (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at high temperatures, 461 p. U.S. Geological Survey Bulletin 2131.Suche in Google Scholar
Rubatto, D., and Hermann, J. (2007) Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chemical Geology, 241, 38–61.10.1016/j.chemgeo.2007.01.027Suche in Google Scholar
Sieh, K., and Bursik, M. (1986) Most recent eruptions of the Mono Craters, eastern central California. Journal of Geophysical Research, 91, 12539–12571.10.1029/JB091iB12p12539Suche in Google Scholar
Simon, J.I., Renne, P.R., and Mundil, R. (2008) Implications of pre-eruptive magmatic histories of zircons for U-Pb geochronology of silicic extrusions. Earth and Planetary Science Letters, 266, 182–194.10.1016/j.epsl.2007.11.014Suche in Google Scholar
Skirius, C.M., Peterson, J.W., and Anderson, A.T. (1990) Homogenizing rhyolitic glass inclusions from the Bishop Tuff. American Mineralogist, 75, 1381–1398.Suche in Google Scholar
Valley, J.W., Lackey, J.S., Cavosie, A.J., Clechenko, C.C., Spicuzza, M.J., Basei, M.A.S., Bindeman, I.N., Ferreira, V.P., Sial, A.N., King, E.M., and others. (2005) 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contributions to Mineralogy and Petrology, 150, 561–580.10.1007/s00410-005-0025-8Suche in Google Scholar
Wallace, P.J., Dufek, J., Anderson, A.T., and Zhang, Y. (2003) Cooling rates of Plinian-fall and pyroclastic-flow deposits in the Bishop Tuff: Inferences from water speciation in quartz-hosted glass inclusions. Bulletin of Volcanology, 65, 105–123.10.1007/s00445-002-0247-9Suche in Google Scholar
Wang, H., Xu, Z., Behrens, H., and Zhang, Y. (2009) Water diffusion in Mount Changbai peralkaline rhyolitic melt. Contributions to Mineralogy and Petrology, 158, 471–484.10.1007/s00410-009-0392-7Suche in Google Scholar
Watson, E.B. (1979) Zircon saturation in felsic liquids: experimental results and applications to trace element geochemistry. Contributions to Mineralogy and Petrology, 70, 407–419.10.1007/BF00371047Suche in Google Scholar
Watson, E.B., and Harrison, T.M. (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64, 295–304.10.1016/0012-821X(83)90211-XSuche in Google Scholar
Xu, Z., and Zhang, Y. (2002) Quench rates in water, air and liquid nitrogen, and inference of temperature in volcanic eruption columns. Earth and Planetary Science Letters, 200, 315–330.10.1016/S0012-821X(02)00656-8Suche in Google Scholar
Yu, Y., Zhang, Y., and Yang, Y. (2015) Diffusion of SiO2 in rhyolitic melt. AGU Fall Meeting abstract V41B-3070.Suche in Google Scholar
Yu, Y., Zhang, Y., Chen, Y., and Xu, Z. (2016) Kinetics of anorthite dissolution in basaltic melt. Geochimica et Cosmochimica Acta, 179, 257–274.10.1016/j.gca.2016.02.002Suche in Google Scholar
Zhang, Y. (1994) Reaction kinetics, geospeedometry, and relaxation theory. Earth and Planetary Science Letters, 122, 373–391.10.1016/0012-821X(94)90009-4Suche in Google Scholar
Zhang, Y. (1999) H2O in rhyolitic glasses and melts: Measurement, speciation, solubility, and diffusion. Reviews of Geophysics, 37, 493–516.10.1029/1999RG900012Suche in Google Scholar
Zhang, Y. (2005) Fate of rising CO2 droplets in seawater. Environmental Science and Technology, 39, 7719–7724.10.1021/es050140eSuche in Google Scholar
Zhang, Y. (2008) Geochemical Kinetics, 656 p. Princeton University Press, New Jersey.Suche in Google Scholar
Zhang, Y. (2010) Diffusion in minerals and melts: theoretical background. Reviews in Mineralogy and Geochemistry, 72, 5–59.10.1515/9781501508394-003Suche in Google Scholar
Zhang, Y. (2013) Kinetics and dynamics of mass-transfer-controlled mineral and bubble dissolution or growth: A review. European Journal of Mineralogy, 25, 255–266.10.1127/0935-1221/2013/0025-2292Suche in Google Scholar
Zhang, Y. (2015) Toward a quantitative model for the formation of gravitational magmatic sulfide deposits. Chemical Geology, 391, 56–73.10.1016/j.chemgeo.2014.10.025Suche in Google Scholar
Zhang, Y., and Ni, H. (2010) Diffusion of H, C, and O components in silicate melts. Reviews in Mineralogy and Geochemistry, 72, 171–225.10.1515/9781501508394-006Suche in Google Scholar
Zhang, Y., and Xu, Z. (2003) Kinetics of convective crystal dissolution and melting, with applications to methane hydrate dissolution and dissociation in seawater. Earth and Planetary Science Letters, 213, 133–148.10.1016/S0012-821X(03)00297-8Suche in Google Scholar
Zhang, Y. (2008) “Fizzics” of bubble growth in beer and champagne. Elements, 4, 47–49.10.2113/GSELEMENTS.4.1.47Suche in Google Scholar
Zhang, Y., Walker, D., and Lesher, C.E. (1989) Diffusive crystal dissolution. Contributions to Mineralogy and Petrology, 102, 492–513.10.1007/BF00371090Suche in Google Scholar
Zhang, Y., Belcher, R., Ihinger, P.D., Wang, L., Xu, Z., and Newman, S. (1997) New calibration of infrared measurement of water in rhyolitic glasses. Geochimica et Cosmochimica Acta, 61, 3089–3100.10.1016/S0016-7037(97)00151-8Suche in Google Scholar
Zhang, Y., Ni, H., and Chen, Y. (2010) Diffusion data in silicate melts. Reviews in Mineralogy and Geochemistry, 72, 311–408.10.1515/9781501508394-009Suche in Google Scholar
Zhao, D., Zhang, Y., and Essene, E.J. (2015) Electron probe microanalysis and microscopy: principles and applications in characterization of mineral inclusions in chromite from diamond deposit. Ore Geology Review, 65, 733–748.10.1016/j.oregeorev.2014.09.020Suche in Google Scholar
© 2016 by Walter de Gruyter Berlin/Boston
Artikel in diesem Heft
- Invited Centennial Article
- On the nature and significance of rarity in mineralogy
- Special collection: mechanisms, rates, and timescales of geochemical transport processes in the crust and mantle
- Zircon saturation and Zr diffusion in rhyolitic melts, and zircon growth geospeedometer
- Review
- On silica-rich granitoids and their eruptive equivalents
- Special collection: advances in ultrahigh-pressure metamorphism
- Discovery of in situ super-reducing, ultrahigh-pressure phases in the Luobusa ophiolitic chromitites, Tibet: new insights into the deep upper mantle and mantle transition zone
- Special collection: from magmas to ore deposits
- Uraninite from the Olympic Dam IOCG-U-Ag deposit: linking textural and compositional variation to temporal evolution
- Special collection: from magmas to ore deposits
- A story of olivine from the McIvor Hill complex (Tasmania, Australia): Clues to the origin of the Avebury metasomatic Ni sulfide deposit
- Special collection: perspectives on origins and evolution of crustal magmas
- The origin of extensive Neoarchean high-silica batholiths and the nature of intrusive complements to silicic ignimbrites: Insights from the Wyoming batholith, U.S.A.
- Special collection: perspectives on origins and evolution of crustal magmas
- From the Hadean to the Himalaya: 4.4 Ga of felsic terrestrial magmatism
- Spinels renaissance: the past, present, and future of those ubiquitous minerals and materials
- Compositional effects on the solubility of minor and trace elements in oxide spinel minerals: insights from crystal-crystal partition coefficients in chromite exsolution
- Spinels renaissance: the past, present, and future of those ubiquitous minerals and materials
- An X-ray magnetic circular dichroism (XMCD) study of Fe ordering in a synthetic MgAl2O4-Fe3O4 (spinel-magnetite) solid-solution series: Implications for magnetic properties and cation site ordering
- Research Article
- High concentrations of manganese and sulfur in deposits on Murray Ridge, Endeavour Crater, Mars
- Research Article
- A Cr3+ luminescence study of spodumene at high pressures: effects of site geometry, a phase transition, and a level-crossing
- Research Article
- Phase transitions between high- and low-temperature orthopyroxene in the Mg2Si2O6-Fe2Si2O6 system
- Research Article
- High-temperature and high-pressure behavior of carbonates in the ternary diagram CaCO3-MgCO3-FeCO3
- Research Article
- Natural Mg-Fe clinochlores: enthalpies of formation and dehydroxylation derived from calorimetric study
- Research Article
- Trace element thermometry of garnet-clinopyroxene pairs
- Research Article
- Constraints on the solid solubility of Hg, Tl, and Cd in arsenian pyrite
- Research Article
- Ni-phyllosilicates (garnierites) from the Falcondo Ni-laterite deposit (Dominican Republic): mineralogy, nanotextures, and formation mechanisms by HRTEM and AEM
- Research Article
- Cu diffusion in a basaltic melt
- Research Article
- High-pressure behavior of the polymorphs of FeOOH
- New Mineral Names
- New Mineral Names
Artikel in diesem Heft
- Invited Centennial Article
- On the nature and significance of rarity in mineralogy
- Special collection: mechanisms, rates, and timescales of geochemical transport processes in the crust and mantle
- Zircon saturation and Zr diffusion in rhyolitic melts, and zircon growth geospeedometer
- Review
- On silica-rich granitoids and their eruptive equivalents
- Special collection: advances in ultrahigh-pressure metamorphism
- Discovery of in situ super-reducing, ultrahigh-pressure phases in the Luobusa ophiolitic chromitites, Tibet: new insights into the deep upper mantle and mantle transition zone
- Special collection: from magmas to ore deposits
- Uraninite from the Olympic Dam IOCG-U-Ag deposit: linking textural and compositional variation to temporal evolution
- Special collection: from magmas to ore deposits
- A story of olivine from the McIvor Hill complex (Tasmania, Australia): Clues to the origin of the Avebury metasomatic Ni sulfide deposit
- Special collection: perspectives on origins and evolution of crustal magmas
- The origin of extensive Neoarchean high-silica batholiths and the nature of intrusive complements to silicic ignimbrites: Insights from the Wyoming batholith, U.S.A.
- Special collection: perspectives on origins and evolution of crustal magmas
- From the Hadean to the Himalaya: 4.4 Ga of felsic terrestrial magmatism
- Spinels renaissance: the past, present, and future of those ubiquitous minerals and materials
- Compositional effects on the solubility of minor and trace elements in oxide spinel minerals: insights from crystal-crystal partition coefficients in chromite exsolution
- Spinels renaissance: the past, present, and future of those ubiquitous minerals and materials
- An X-ray magnetic circular dichroism (XMCD) study of Fe ordering in a synthetic MgAl2O4-Fe3O4 (spinel-magnetite) solid-solution series: Implications for magnetic properties and cation site ordering
- Research Article
- High concentrations of manganese and sulfur in deposits on Murray Ridge, Endeavour Crater, Mars
- Research Article
- A Cr3+ luminescence study of spodumene at high pressures: effects of site geometry, a phase transition, and a level-crossing
- Research Article
- Phase transitions between high- and low-temperature orthopyroxene in the Mg2Si2O6-Fe2Si2O6 system
- Research Article
- High-temperature and high-pressure behavior of carbonates in the ternary diagram CaCO3-MgCO3-FeCO3
- Research Article
- Natural Mg-Fe clinochlores: enthalpies of formation and dehydroxylation derived from calorimetric study
- Research Article
- Trace element thermometry of garnet-clinopyroxene pairs
- Research Article
- Constraints on the solid solubility of Hg, Tl, and Cd in arsenian pyrite
- Research Article
- Ni-phyllosilicates (garnierites) from the Falcondo Ni-laterite deposit (Dominican Republic): mineralogy, nanotextures, and formation mechanisms by HRTEM and AEM
- Research Article
- Cu diffusion in a basaltic melt
- Research Article
- High-pressure behavior of the polymorphs of FeOOH
- New Mineral Names
- New Mineral Names