Startseite Naturwissenschaften Bonding and noncovalent interactions effects in 2,6-dimethylpiperazine-1,4-diium oxalate oxalic acid: DFT calculation, topological analysis, NMR and molecular docking studies
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Bonding and noncovalent interactions effects in 2,6-dimethylpiperazine-1,4-diium oxalate oxalic acid: DFT calculation, topological analysis, NMR and molecular docking studies

  • Mouna Medimagh , Cherifa Ben Mleh , Noureddine ISSAOUI EMAIL logo , Murugesan Raja , Aleksandr S. Kazachenko , Omar M. Al-Dossary , Thierry Roisnel , Naveen Kumar und Houda Marouani
Veröffentlicht/Copyright: 22. November 2023

Abstract

The pharmaceutical proprieties of the 2,6-dimethylpiperazine-1,4-diium oxalate oxalic acid compound have been studied and the relevant drug design has been considered. The investigated organic compound with formula (2,6-(CH3)C4H10N2)2(C2O4)2·H2C2O4 (2DPOA) has been synthesized by slow evaporation technique at room temperature of a molar ratio 3:2 mix of oxalic acid and 2,6-dimethylpiperazine. Then 2DPOA has been characterized by IR, 13C NMR, UV–visible and the DFT calculation at the B3LYP level of theory has been made. The molecular structure and parameters (bond angles and lengths) of the molecule have been optimized using the Gaussian 09 software and compared with the XRD data. The atoms-in-molecules (AIM), electron localization function (ELF), and localized orbital locator (LOL) methods have been utilized to determine the types and nature of noncovalent interactions present within the 2DPOA molecule. These methods offer insights into the characteristics and behavior of these interactions. Furthermore, the presence of these interactions has been confirmed through the Hirshfeld Surface (HS) and reduced density gradient (RDG) analysis. The NBO analysis is employed to assess the charge exchange occurring within the studied compound. The molecular reactive sites have been examined using the molecular potential surface and Mulliken atomic charges. The energy gap between HOMO–LUMO and chemical properties of 2DPOA have been determined within the frontier molecular orbital theory. The UV–Vis spectrum of the 2DPOA molecule has been recorded and examined. The calculated and experimental infrared absorption and nuclear magnetic resonance spectra of 2DPOA molecule have been investigated. Finally, the molecular docking simulation has been used to find novel inhibitors and drugs for the cancer and epilepsy disease treatment.


Corresponding author: Noureddine ISSAOUI, Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, University of Monastir, Monastir 5079, Tunisia, E-mail:

Acknowledgments

This study was supported by the Researchers Supporting Project no. RSP2023R61 of King Saud University, Riyadh, Saudi Arabia. This study was partially carried out within the state assignment no. 0287-548 2021-0012 for the Institute of Chemistry and Chemical Technology, Siberian Branch of the Russian Academy of Sciences.

  1. Research ethics: This work does not contain any studies with human participants or animals by any of the authors.

  2. Author contributions: Mouna Medimagh - conceptualization, methodology, software, writing—original draft preparation. Cherifa Ben Mleh - data curation, writing. Noureddine ISSAOUI - conceptualization, methodology, software, data curation, resources, writing—original draft preparation, supervision, writing—review and editing, project administration. Murugesan Raja - formal analysis. Aleksandr S. Kazachenko - formal analysis, data curation. Omar M. Al-Dossary conceptualization, resources. Thierry Roisnel - methodology. Naveen Kumar - formal analysis. Houda Marouani - conceptualization, methodology, software, writing—original draft preparation, supervision.

  3. Competing interests: The authors declare no conflicts of interest.

  4. Research funding: Not applicable.

  5. Data availability: The data presented in this work may be requested from the corresponding author.

References

1. Nocentini, A., Vullo, D., Bartolucci, G., Supuran, C. T. N-Nitrosulfonamides: a new chemotype for carbonic anhydrase inhibition. Bioorg. Med. Chem. 2016, 24, 3612–3617; https://doi.org/10.1016/j.bmc.2016.05.072.Suche in Google Scholar PubMed

2. George, J., Prasana, J. C., Muthu, S., Kuruvilla, T. K., Sevanthi, S., Saji, R. S. Spectroscopic (FT-IR, FT Raman) and quantum mechanical study on N-(2,6-dimethylphenyl)-2-{4-[2-hydroxy-3-(2-methoxyphenoxy)propyl]piperazin-1-yl}acetamide. J. Mol. Struct. 2018, 1171, 268–278; https://doi.org/10.1016/j.molstruc.2018.05.106.Suche in Google Scholar

3. Ghatfaoui, S., ISSAOUI, N., Kazachenko, A. S., Kumar, O. N., Roisnel, T., Marouani, H., Kazachenko, A. S., Malyar, Y. N. Promising bioactive properties of (2R,5S)-2,5-dimethylpiperazine-1,4-diium dinitrate material: experimental, theoretical and in silico investigation. Z. Phys. Chem. 2023, 237, 1821–1848; https://doi.org/10.1515/zpch-2023-0333.Suche in Google Scholar

4. Medimagh, M., Issaoui, N., Gatfaoui, S., Al-Dossary, O., Kazachenko, A. S., Marouani, H., Wojcik, M. J. Molecular modeling and biological activity analysis of new organic–inorganic compound: 2-(3,4-dihydroxyphenyl)ethanaminium nitrate. J. King Saud Univ., Sci. 2021, 33, 101616; https://doi.org/10.1016/j.jksus.2021.101616.Suche in Google Scholar

5. Kosar, N., Mahmood, T. Outstanding NLO response of K3O@thia[n]circulenes; a DFT and molecular dynamics perspective. Phys. Scr. 2023, 98, 105249; https://doi.org/10.1088/1402-4896/acf893.Suche in Google Scholar

6. Muthu, S., Ramachandran, G. Spectroscopic studies (FTIR, FT-Raman and UV–visible), normal coordinate analysis, NBO analysis, first order hyper polarizability, HOMO and LUMO analysis of (1R)-N-(Prop-2-yn-1-yl)-2,3-dihydro-1H-inden-1-amine molecule by ab initio HF and density functional methods. Spectrochim. Acta Part A 2014, 121, 394–403; https://doi.org/10.1016/j.saa.2013.10.093.Suche in Google Scholar PubMed

7. Thamarai, A., Vadamalar, R., Raja, M., Muthu, S., Narayana, B., Ramesh, P., Aayisha, S., Sevvanthi, S. Molecular structure interpretation, spectroscopic (FT-IR, FT-Raman), electronic solvation (UV–Vis, HOMO-LUMO and NLO) properties and biological evaluation of (2E)-3-(biphenyl-4-yl)-1-(4-bromophenyl)prop-2-en-1-one: experimental and computational modeling approach. Spectrochim. Acta Part A 2020, 226, 117609; https://doi.org/10.1016/j.saa.2019.117609.Suche in Google Scholar PubMed

8. Frisch, A. Gaussian 09W Reference; Wallingford, USA, Vol. 25, 2009; p. 470.Suche in Google Scholar

9. Keith, T. A. AIMAll (version 10.05.04); TK Gristmill Software: Overland Park KS, USA, 2010. http://aim.tkgristmill.com.Suche in Google Scholar

10. Lu, T., Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580e592. https://doi.org/10.1002/jcc.22885.Suche in Google Scholar PubMed

11. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D., Spackman, M. A. Crystal Explorer (version 3.1); UWA, 2012.Suche in Google Scholar

12. Humphrey, W., Dalke, A., Schulten, K. VMD – visual molecular dynamics. J. Mol. Graphics 1996, 14, 33–38; https://doi.org/10.1016/0263-7855(96)00018-5.Suche in Google Scholar PubMed

13. Dennington, R., Keith, T., Millam, J. GaussView (version 6); Semichem. Inc.Suche in Google Scholar

14. Jamroz, M. H. Vibrational Energy Distribution Analysis: VEDA 4 Program; Warsaw, 2004.Suche in Google Scholar

15. Protein Data Bank: http://www.rcsb.org/pdb/.Suche in Google Scholar

16. Molecular Operating Environment (MOE), 2015.10; Chemical Computing Group Inc.: 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2015.Suche in Google Scholar

17. Bernstein, J., David, R. E., Shimoni, L., Chang, N. L. Angew. Chem. Int. Ed. Engl. 1995, 34, 1555; https://doi.org/10.1002/anie.199515551.Suche in Google Scholar

18. Medimagh, M., Issaoui, N., Gatfaoui, S., Brandán, S. A., Al-Dossary, O., Marouani, H., Wojcik, M. J. Impact of non-covalent interactions on FT-IR spectrum and properties of 4-methylbenzylammonium nitrate. A DFT and molecular docking study. Heliyon 2021, 7, e08204; https://doi.org/10.1016/j.heliyon.2021.e08204.Suche in Google Scholar PubMed PubMed Central

19. Sajid, H., Ayub, K., Gilani, M. A., Mahmood, T. Donor-π-acceptor N-methyl-4,5-diazacarbazole based ultra-high performance organic solar cells: a density functional theory study. Energy Technol. 2023, 11, 2201164; https://doi.org/10.1002/ente.202201164.Suche in Google Scholar

20. Jumabaev, A., Holikulov, U., Hushvaktov, H., Issaoui, N., Absanov, A. Intermolecular interactions in ethanol solution of OABA: Raman, FTIR, DFT, M062X, MEP, NBO, FMO, AIM, NCI, RDG analysis. J. Mol. Liq. 2023, 377, 121552; https://doi.org/10.1016/j.molliq.2023.121552.Suche in Google Scholar

21. Medimagh, M., Mleh, C. B., Issaoui, N., Kazachenko, A. S., Roisnel, T., Al-Dossary, O. M., Bousiakoug, L. G. DFT and molecular docking study of the effect of a green solvent (water and DMSO) on the structure, MEP, and FMOs of the 1-ethylpiperazine-1,4-diium bis(hydrogenoxalate) compound. J. Mol. Liq. 2023, 369, 120851; https://doi.org/10.1016/j.molliq.2022.120851.Suche in Google Scholar

22. Kazachenko, A. S., Issaoui, N., Sagaama, A., Malyar, Y. N., Al-Dossary, O., Bousiakou, L. G., Kazachenko, A. S., Miroshnokova, A. V., Xiang, Z. Hydrogen bonds interactions in biuret-water clusters: FTIR, X-ray diffraction, AIM, DFT, RDG, ELF, NLO analysis. J. King Saud Univ., Sci. 2022, 34, 102350; https://doi.org/10.1016/j.jksus.2022.102350.Suche in Google Scholar

23. Kazachenko, A. S., Medimagh, M., Issaoui, N., Al-Dossary, O., Wojcik, M. J., Kazachenko, S. A., Miroshnokova, A. V., Malyar, A. V. Y. N. Sulfamic acid/water complexes (SAA-H2O(1-8)) intermolecular hydrogen bond interactions: FTIR, X-ray, DFT and AIM analysis. J. Mol. Struct. 2022, 1265, 133394; https://doi.org/10.1016/j.molstruc.2022.133394.Suche in Google Scholar

24. Priya, M. K., Revathi, B. K., Renuka, V., Sathya, S., Asirvatham, P. S. Molecular structure, spectroscopic (FT-IR, FT-Raman, 13C and 1H NMR) analysis, HOMO-LUMO energies, Mulliken, MEP and thermal properties of new chalcone derivative by DFT calculation. Mater. Today: Proc. 2019, 8, 37–46; https://doi.org/10.1016/j.matpr.2019.02.078.Suche in Google Scholar

25. Noureddine, O., Issaoui, N., Gatfaoui, S., Al-Dossary, O., Marouani, H. Quantum chemical calculations, spectroscopic properties and molecular docking studies of a novel piperazine derivative. J. King Saud Univ., Sci. 2021, 33, 101283; https://doi.org/10.1016/j.jksus.2020.101283.Suche in Google Scholar

26. Ramalingam, A., Sambandam, S., Medimagh, M., Al-Dossary, O., Issaoui, N., Wojcik, M. J. Study of a new piperidone as an anti-Alzheimer agent: molecular docking, electronic and intermolecular interaction investigations by DFT method. J. King Saud Univ., Sci. 2021, 33, 101632; https://doi.org/10.1016/j.jksus.2021.101632.Suche in Google Scholar

27. Ott, J. B., Boerio-Goates, J. Calculations from statistical thermodynamics. In Chemical Thermodynamics: Advanced Applications; Academic Press: London, UK, 2000; pp. 383–407.10.1016/B978-012530985-1.50011-4Suche in Google Scholar

28. Kosar, N., Wajid, S., Ayub, K., Gilani, M. A., Mahmood, T. First, second and third order NLO response of alkaline earth metals doped C6O6Li6 organometallic complexes. Chem. Phys. 2023, 570, 111894; https://doi.org/10.1016/j.chemphys.2023.111894.Suche in Google Scholar

29. Zhang, R., Du, B., Sun, G., Sun, Y. Experimental and theoretical studies on o-, m- and p-chlorobenzylideneaminoantipyrines. Spectrochim. Acta Part A 2010, 75, 1115–1124; https://doi.org/10.1016/j.saa.2009.12.067.Suche in Google Scholar PubMed

30. Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 1968, 3, 37–46; https://doi.org/10.1016/0025-5408(68)90023-8.Suche in Google Scholar

31. Thirunavukkarasu, M., Balaji, G., Muthu, S., Raajaraman, B. R., Ramesh, P. Computational spectroscopic investigations on structural validation with IR and Raman experimental evidence, projection of ultraviolet-visible excitations, natural bond orbital interpretations, and molecular docking studies under the biological investigation on N-benzyloxycarbonyl-l-aspartic acid 1-benzyl ester. Chem. Data Collect. 2021, 31, 100622; https://doi.org/10.1016/j.cdc.2020.100622.Suche in Google Scholar

32. Rekik, N., Issaoui, N., Ghalla, H., Oujia, B., Wojcik, M. J. Infrared spectral density of H-bonds within the strong anharmonic coupling theory: indirect relaxation effect. J. Mol. Struct. 2007, 844-845, 21–31; https://doi.org/10.1016/j.molstruc.2007.02.040.Suche in Google Scholar

33. Amul, B., Muthu, S., Raja, M., Sevvanthi, S. Spectral, DFT and molecular docking investigations on etodolac. J. Mol. Struct. 2019, 1195, 747–761; https://doi.org/10.1016/j.molstruc.2019.06.047.Suche in Google Scholar

34. Julie, M. M., Prabhu, T., Elamuruguporchelvi, E., Asif, F. B., Muthu, S., Irfan, A. Structural (monomer and dimer), wavefunctional, NCI analysis in aqueous phase, electronic and excited state properties in different solvent atmosphere of 3-{(E)-[(3,4-dichlorophenyl)imino]methyl}benzene-1,2-diol. J. Mol. Liq. 2021, 336, 116335; https://doi.org/10.1016/j.molliq.2021.116335.Suche in Google Scholar

35. De Luca, L., Ferro, S., Damiano, F. M., Supuran, C. T., Vullo, D., Chimirri, A., Gitto, R. Structure-based screening for the discovery of new carbonic anhydrase VII inhibitors. Eur. J. Med. Chem. 2014, 71, 105–111; https://doi.org/10.1016/j.ejmech.2013.10.071.Suche in Google Scholar PubMed

36. Becker, H. M. Carbonic anhydrase IX and acid transport in cancer. Br. J. Cancer 2020, 122, 157–167; https://doi.org/10.1038/s41416-019-0642-z.Suche in Google Scholar PubMed PubMed Central

37. Singh, S., Lomelino, C. L., Mboge, M. Y., Frost, S. C., McKenna, R. Cancer drug development of carbonic anhydrase inhibitors beyond the active site. Molecules 2018, 23, 1045; https://doi.org/10.3390/molecules23051045.Suche in Google Scholar PubMed PubMed Central

38. Mhadhbi, N., Issaoui, N., Hamadou, W. S., Alam, J. M., Elhadi, A. S., Adnan, M., Naϊli, H., Badraoui, R. Physico-chemical properties, pharmacokinetics, molecular docking and in-vitro pharmacological study of a Cobalt (II) Complex based on 2-Aminopyridine. Chemistry Select, 2022, 7, e202103592; https://doi.org/10.1002/slct.202103592.Suche in Google Scholar

39. Ahmad, N., Farman, A., Badshah, S. L., Rahman, A. U., Ur Rashid, H., Khan, K. Molecular modeling, simulation and docking study of ebola virus glycoprotein. J. Mol. Graphics Modell. 2017, 72, 266–271; https://doi.org/10.1016/j.jmgm.2016.12.010.Suche in Google Scholar PubMed

40. Arshad, M., Ahmed, K., Iqbal, Z., Rashid, U., Arshad, M. N., Asiri, A. M., Mahmood, T. Synthesis, structural properties, enzyme inhibition and molecular docking studies of (Z)-N′-(1-allyl-2-oxoindolin-3-ylidene) methanesulfono-hydrazide and (Z)-N′-(1-allyl-2-oxoindolin-3-ylidene)-3-nitrobenzenesulfono-hydrazide. J. Mol. Struct. 2020, 1221, 128880; https://doi.org/10.1016/j.molstruc.2020.128880.Suche in Google Scholar

41. Ghatfaoui, S., Issaoui, N., Roisnel, T., Marouani, H. Synthesis, experimental and computational study of a non-centrosymmetric material 3-ethylbenzylammonium trioxonitrate. J. Mol. Struct. 2021, 1225, 129132; https://doi.org/10.1016/j.molstruc.2020. 129132.10.1016/j.molstruc.2020.129132Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zpch-2023-0354).


Received: 2023-09-21
Accepted: 2023-11-05
Published Online: 2023-11-22
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2023-0354/html
Button zum nach oben scrollen