Startseite Naturwissenschaften Effect of ionic strength on DNA–dye interactions of Victoria blue B and methylene green using UV–visible spectroscopy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of ionic strength on DNA–dye interactions of Victoria blue B and methylene green using UV–visible spectroscopy

  • Faizan Ur Rahman , Shahab Khan , Maooz Ur Rahman , Rukhsana Zaib , Mudassir Ur Rahman , Riaz Ullah , Muhammad Zahoor EMAIL logo und Abdul Waheed Kamran
Veröffentlicht/Copyright: 20. November 2023

Abstract

Victoria blue and methylene green dyes have both been extensively studied due to their numerous applications, including their ability to bind to DNA. Dyes are very important in everyday life with applications in textile, cosmetics, food and pharmaceutical industries. It has been found that some of them adversely affect human health causing severe abnormalities. Among these abnormalities, cancer is of great concern due to its fatal and almost non-recoverable nature. In this work we have studied the binding of two dyes namely Victoria blue B (VBB) and Methylene green (MG) with double stranded DNA (Salmon sperm). The interactions were studied in the presence of different concentrations of buffer solutions at a constant pH. The selected dyes showed interactions with double-stranded DNA through intercalation and electrostatic modes. Upon increasing ionic strength of the buffer the binding constant (K b ) value for MG was decreased whereas increased for VBB, which conclude that, at higher ionic strength (0.5 M) the DNA–MG interactions is lower and DNA–VVB interactions is maximum. The carcinogenicity of a given dye is indicated from its binding constants in the current study. Based on the recorded K b values of the selected dyes it was concluded that proper disposing and precautions should be taken while utilizing/dealing these dyes in order to minimize/avoid their impact on environment and human health.


Corresponding author: Muhammad Zahoor, Department of Biochemistry, University of Malakand, 18800 Chakdara, Dir (Lower), Khyber Pakhtunkhwa, Pakistan, E-mail:

Funding source: King Saud University

Award Identifier / Grant number: Unassigned

Acknowledgment

The authors extend their appreciation to the researchers supporting Project number (RSP2023R110) King Saud University, Riyadh, Saudi Arabia, for financial support.

  1. Research ethics: Not applicable.

  2. Author contributions: Faizan Ur Rahman and Shahab Khan prepared DNA for processing and design scheme of the study, Maooz Ur Rahman and Rukhsana Zaib interpreted the data, Mudassir Ur Rahman and R. Ullah performed validation of the data, A. W. Kamran and M. Zahoor performed UV-visible spectrum of Victoria Blue B and Methylene Green and wrote the paper and revised.

  3. Competing interests: The authors declares that they have no competing interest.

  4. Research funding: This work was supported by King Saud University, researchers supporting Project (number RSP2023R110), King Saud University, Riyadh, Saudi Arabia.

  5. Data availability: No data is associated with this pubication.

References

1. Yao, J., Yang, M., Duan, Y. Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: new insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem. Rev. 2014, 114, 6130–6178; https://doi.org/10.1021/cr200359p.Suche in Google Scholar PubMed

2. Khanna, V. K. Existing and emerging detection technologies for DNA (Deoxyribonucleic Acid) finger printing, sequencing, bio- and analytical chips: a multidisciplinary development unifying molecular biology, chemical and electronics engineering. Biotechnol. Adv. 2007, 25, 85–98; https://doi.org/10.1016/j.biotechadv.2006.10.003.Suche in Google Scholar PubMed

3. Peacocke, A., Skerrett, J. H. The interaction of aminoacridines with nucleic acids. Transactions of the Faraday Society 1956, 52, 261–279; https://doi.org/10.1039/tf9565200261.Suche in Google Scholar

4. Qais, F. A., Abdullah, K., Alam, M. M., Naseem, I., Ahmad, I. Interaction of capsaicin with calf thymus DNA: a multi-spectroscopic and molecular modelling study. Int. J. Biol. Macromol. 2017, 97, 392–402; https://doi.org/10.1016/j.ijbiomac.2017.01.022.Suche in Google Scholar PubMed

5. Darzynkiewicz, Z., Huang, X., Zhao, H. Analysis of cellular DNA content by flow cytometry. Curr. Protoc. Im. 2017, 119, 5.7.1–5.7.20; https://doi.org/10.1002/cpcy.28.Suche in Google Scholar PubMed

6. Vardevanyan, P., Antonyan, A., Sahakyan, V. Peculiarities of acridine orange binding with DNA. Ajastan Kensabanakan Handes 2016, 68.Suche in Google Scholar

7. El-Garawani, I. M., Hassab El-Nabi, S. Increased sensitivity of apoptosis detection using direct DNA staining method and integration of acridine orange as an alternative safer fluorescent dye in agarose gel electrophoresis and micronucleus test. Cjpas 2016, 10, 3865–3871.Suche in Google Scholar

8. de Carvalho Bertozo, L., Tutone, M., Pastrello, B., da Silva-Filho, L. C., Culletta, G., Almerico, A. M., Ximenes, V. F. Aminoquinolines: fluorescent sensors to DNA–A minor groove probe. Experimental and in silico studies. J. Photochem. Photobiol. Chem., 2023, 114944; https://doi.org/10.1016/j.jphotochem.2023.114944.Suche in Google Scholar

9. Dareini, M., Tehranizadeh, Z. A., Marjani, N., Taheri, R., Aslani-Firoozabadi, S., Talebi, A., Eidgahi, N. N., Saberi, M. R., Chamani, J. A novel view of the separate and simultaneous binding effects of docetaxel and anastrozole with calf thymus DNA: experimental and in silico approaches. Spectrochim. Acta Mol. Biomol. Spectrosc. 2020, 228, 117528; https://doi.org/10.1016/j.saa.2019.117528.Suche in Google Scholar PubMed

10. Yasmeen, S., Qais, F. A., Rana, M., Islam, A. Binding and thermodynamic study of thalidomide with calf thymus DNA: spectroscopic and computational approaches. Int. J. Biol. Macromol. 2022, 207, 644–655; https://doi.org/10.1016/j.ijbiomac.2022.03.036.Suche in Google Scholar PubMed

11. Liang, C., Chen, J., Li, M., Ge, Z., Fan, C., Shen, J. Probing the self-assembly process of amphiphilic tetrahedral DNA frameworks. Chem. Commun. 2022, 58, 8352–8355; https://doi.org/10.1039/d2cc03451d.Suche in Google Scholar PubMed

12. Lin, X., Li, C., Meng, X., Yu, W., Duan, N., Wang, Z., Wu, S. CRISPR-Cas12a-mediated luminescence resonance energy transfer aptasensing platform for deoxynivalenol using gold nanoparticle-decorated Ti3C2Tx MXene as the enhanced quencher. J. Hazard. Mater. 2022, 433, 128750; https://doi.org/10.1016/j.jhazmat.2022.128750.Suche in Google Scholar PubMed

13. Gautam, D., Pandey, S., Chen, J. Effect of flow rate and ionic strength on the stabilities of YOYO-1 and YO-PRO-1 intercalated in DNA molecules. J. Phys. Chem. B 2023, 127, 2450–2456; https://doi.org/10.1021/acs.jpcb.3c00777.Suche in Google Scholar PubMed PubMed Central

14. Song, Y., Niederschulte, J., Bales, K. N., Bashkin, J. K., Dupureur, C. M. Thermodynamics and site stoichiometry of DNA binding by a large antiviral hairpin polyamide. Biochimie 2019, 157, 149–157; https://doi.org/10.1016/j.biochi.2018.11.013.Suche in Google Scholar PubMed

15. Sapia, R. J., Campbell, C., Reed, A. J., Tsvetkov, V. B., Gerasimova, Y. V. Interaction of GelRed™ with single-stranded DNA oligonucleotides: preferential binding to thymine-rich sequences. Dyes Pigm. 2021, 188, 109209; https://doi.org/10.1016/j.dyepig.2021.109209.Suche in Google Scholar

16. Karg, B., Funke, A., Ficht, A., Sievers‐Engler, A., Lämmerhofer, M., Weisz, K. Molecular recognition and visual detection of G‐quadruplexes by a dicarbocyanine dye. Chem. A Eur. J. 2015, 21, 13802–13811; https://doi.org/10.1002/chem.201502118.Suche in Google Scholar PubMed

17. Akram, M., Lal, H. Exploring the binding mode of ester-based cationic gemini surfactants with calf thymus DNA: a detailed physicochemical, spectroscopic and theoretical study. Bioorg. Chem. 2022, 119, 105555; https://doi.org/10.1016/j.bioorg.2021.105555.Suche in Google Scholar PubMed

18. Mazzoli, A., Spalletti, A., Carlotti, B., Emiliani, C., Fortuna, C. G., Urbanelli, L., Tarpani, L., Germani, R. Spectroscopic investigation of interactions of new potential anticancer drugs with DNA and non-ionic micelles. J. Phys. Chem. B 2015, 119, 1483–1495; https://doi.org/10.1021/jp510360u.Suche in Google Scholar PubMed

19. Muhammad, M. T., Khan, M. N. Study of electrolytic effect on the interaction between anionic surfactant and methylene blue using spectrophotometric and conductivity methods. J. Mol. Liq. 2017, 234, 309–314; https://doi.org/10.1016/j.molliq.2017.03.102.Suche in Google Scholar

20. Kasyanenko, N., Unksov, I., Bakulev, V., Santer, S. DNA interaction with head-to-tail associates of cationic surfactants prevents formation of compact particles. Molecules 2018, 23, 1576; https://doi.org/10.3390/molecules23071576.Suche in Google Scholar PubMed PubMed Central

21. Liu, B., Liu, J. Accelerating peroxidase mimicking nanozymes using DNA. Nanoscale 2015, 7, 13831–13835; https://doi.org/10.1039/c5nr04176g.Suche in Google Scholar PubMed

22. Hannewald, N., Winterwerber, P., Zechel, S., Ng, D. Y., Hager, M. D., Weil, T., Schubert, U. S. DNA origami meets polymers: a powerful tool for the design of defined nanostructures. Angew. Chem. Int. Ed. 2021, 60, 6218–6229; https://doi.org/10.1002/anie.202005907.Suche in Google Scholar PubMed PubMed Central

23. Sarwar, T., Rehman, S. U., Husain, M. A., Ishqi, H. M., Tabish, M. Interaction of coumarin with calf thymus DNA: deciphering the mode of binding by in vitro studies. Int. J. Biol. Macromol. 2015, 73, 9–16; https://doi.org/10.1016/j.ijbiomac.2014.10.017.Suche in Google Scholar PubMed

24. Jana, J., M. Ganguly, T. Pal, Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application. RSC Adv. 2016, 6, 86174-86211, https://doi.org/10.1039/c6ra14173k.Suche in Google Scholar

25. Oh, T. Extended Fluorescent Resonant Energy Transfer in DNA Constructs; University of California: San Diego, 2016.Suche in Google Scholar

26. Buurma, N. J., Haq, I. Calorimetric and spectroscopic studies of Hoechst 33258: self-association and binding to non-cognate DNA. J. Mol. Biol. 2008, 381, 607–621; https://doi.org/10.1016/j.jmb.2008.05.073.Suche in Google Scholar PubMed

27. Janovec, L., Kožurková, M., Sabolová, D., Ungvarský, J., Paulíková, H., Plšíková, J., Vantová, Z., Imrich, J. Cytotoxic 3, 6-bis ((imidazolidinone) imino) acridines: synthesis, DNA binding and molecular modeling. Biorg. Med. Chem. 2011, 19, 1790–1801; https://doi.org/10.1016/j.bmc.2011.01.012.Suche in Google Scholar PubMed

28. Zipper, H., Brunner, H., Bernhagen, J., Vitzthum, F. Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. Nucleic Acids Res. 2004, 32, e103; https://doi.org/10.1093/nar/gnh101.Suche in Google Scholar PubMed PubMed Central

29. Moreira, B. G., You, Y., Behlke, M. A., Owczarzy, R. Effects of fluorescent dyes, quenchers, and dangling ends on DNA duplex stability. Biochem. Biophys. Res. Commun. 2005, 327, 473–484; https://doi.org/10.1016/j.bbrc.2004.12.035.Suche in Google Scholar PubMed

30. Rohs, R., Sklenar, H. Methylene blue binding to DNA with alternating AT base sequence: minor groove binding is favored over intercalation. J. Biomol. Struct. Dyn. 2004, 21, 699–711; https://doi.org/10.1080/07391102.2004.10506960.Suche in Google Scholar PubMed

31. Rohs, R., Sklenar, H., Lavery, R., Röder, B. Methylene blue binding to DNA with alternating GC base sequence: a modeling study. J. Am. Chem. Soc. 2000, 122, 2860–2866; https://doi.org/10.1021/ja992966k.Suche in Google Scholar

32. Terenzi, A., Gattuso, H., Spinello, A., Keppler, B. K., Chipot, C., Dehez, F., Barone, G., Monari, A. Targeting G-Quadruplexes with organic dyes: chelerythrine–DNA binding elucidated by combining molecular modeling and optical spectroscopy. Antioxidants 2019, 8, 472; https://doi.org/10.3390/antiox8100472.Suche in Google Scholar PubMed PubMed Central

33. Kumar, K. V., Ramamurthi, V., Sivanesan, S. Modeling the mechanism involved during the sorption of methylene blue onto fly ash. J. Colloid Interface Sci. 2005, 284, 14–21; https://doi.org/10.1016/j.jcis.2004.09.063.Suche in Google Scholar PubMed

34. Karim, Z., Mathew, A. P., Grahn, M., Mouzon, J., Oksman, K. Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water. Carbohydr. Polym. 2014, 112, 668–676; https://doi.org/10.1016/j.carbpol.2014.06.048.Suche in Google Scholar PubMed

35. Tardivo, J. P., Del Giglio, A., De Oliveira, C. S., Gabrielli, D. S., Junqueira, H. C., Tada, D. B., Severino, D., de Fátima Turchiello, R., Baptista, M. S. Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications. Photodiagnosis Photodyn. Ther. 2005, 2, 175–191; https://doi.org/10.1016/s1572-1000(05)00097-9.Suche in Google Scholar PubMed

36. Yang, D., Campolongo, M. J., Nhi Tran, T. N., Ruiz, R. C., Kahn, J. S., Luo, D. Novel DNA materials and their applications. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2010, 2, 648–669; https://doi.org/10.1002/wnan.111.Suche in Google Scholar PubMed PubMed Central

37. Gao, C., Liu, S.-y., Zhang, X., Liu, Y.-k., Liu, Z.-e. Two-photon fluorescence and fluorescence imaging of two styryl heterocyclic dyes combined with DNA. Spectrochim. Acta Mol. Biomol. Spectrosc. 2016, 156, 1–8; https://doi.org/10.1016/j.saa.2015.11.014.Suche in Google Scholar PubMed

38. Doğan, M., Abak, H., Alkan, M. Adsorption of methylene blue onto hazelnut shell: kinetics, mechanism and activation parameters. J. Hazard. Mater. 2009, 164, 172–181; https://doi.org/10.1016/j.jhazmat.2008.07.155.Suche in Google Scholar PubMed

39. Khan, S., Zahoor, M., Rahman, M. U., Gul, Z. Cocrystals: basic concepts, properties and formation strategies. Z. Phys. Chem. 2023, 237, 273–332; https://doi.org/10.1515/zpch-2022-0175.Suche in Google Scholar

40. Cong, W., Chen, M., Zhu, Z., Liu, Z., Nan, J., Ye, W., Ni, M., Zhao, T., Jin, L. A shortcut organic dye-based staining method for the detection of DNA both in agarose and polyacrylamide gel electrophoresis. Analyst 2013, 138, 1187–1194; https://doi.org/10.1039/c2an36079a.Suche in Google Scholar PubMed

41. Liu, B., Jin, S.-F., Li, H.-C., Sun, X.-Y., Yan, S.-Q., Deng, S.-J., Zhao, P. The Bio-safety concerns of three domestic temporary hair dye molecules: fuchsin basic, Victoria blue B and basic red 2. Molecules 2019, 24, 1744; https://doi.org/10.3390/molecules24091744.Suche in Google Scholar PubMed PubMed Central

42. Mason, M. G., Botella, J. R. A simple, robust and equipment-free DNA amplification readout in less than 30 seconds. RSC Adv. 2019, 9, 24440–24450; https://doi.org/10.1039/c9ra04725e.Suche in Google Scholar PubMed PubMed Central

43. Turkova, J. Oriented immobilization of biologically active proteins as a tool for revealing protein interactions and function. J. Chromatogr. B Biomed. Sci. Appl. 1999, 722, 11–31; https://doi.org/10.1016/s0378-4347(98)00434-4.Suche in Google Scholar PubMed

44. Barz, T., Ackermann, K., Pyerin, W. A positive control for the green fluorescent protein-based one-hybrid system. Anal. Biochem. 2002, 304, 117–121; https://doi.org/10.1006/abio.2002.5618.Suche in Google Scholar PubMed

45. Mirzabekov, A., Bavykin, S., Belyavsky, A., Karpov, V., Preobrazhenskaya, O., Shick, V., Ebralidse, K. [20] Mapping DNA–protein interactions by cross-linking. In Methods Enzymol; Elsevier, 1989; pp. 386–408.10.1016/0076-6879(89)70058-6Suche in Google Scholar PubMed

46. O’Steen, M. R., Kolpashchikov, D. M. A self-assembling split aptamer multiplex assay for SARS-COVID19 and miniaturization of a malachite green DNA-based aptamer. Sensor. Actuator. Rep. 2022, 4, 100125; https://doi.org/10.1016/j.snr.2022.100125.Suche in Google Scholar PubMed PubMed Central

47. Gureev, A. P., Shaforostova, E. A., Laver, D. A., Khorolskaya, V. G., Syromyatnikov, M. Y., Popov, V. N. Methylene blue elicits non-genotoxic H 2 O 2 production and protects brain mitochondria from rotenone toxicity. J. Appl. Biomed. 2019, 17; https://doi.org/10.32725/jab.2019.008.Suche in Google Scholar PubMed

48. Prates, R. A., Yamada, A. M.Jr, Suzuki, L. C., Hashimoto, M. C. E., Cai, S., Gouw-Soares, S., Gomes, L., Ribeiro, M. S. Bactericidal effect of malachite green and red laser on Actinobacillus actinomycetemcomitans. J. Photochem. Photobiol. B: Biol. 2007, 86, 70–76; https://doi.org/10.1016/j.jphotobiol.2006.07.010.Suche in Google Scholar PubMed

49. Khan, S., Rahman, F. U., Zahoor, M., Haq, A. U., Shah, A. B., Rahman, M. U., Rahman, H. U. The DNA threat probing of some chromophores using UV/VIS spectroscopy. World J. Biology and Biotechnology 2023, 8, 19–22; https://doi.org/10.33865/wjb.008.02.0962.Suche in Google Scholar

50. Naik, R., Seetharamappa, J. In vitro and computational approaches to untangle the binding mechanism of galangin with calf thymus DNA. J. Fluoresc. 2023, 33, 13–24; https://doi.org/10.1007/s10895-022-03033-x.Suche in Google Scholar PubMed

51. Zhang, G., Hu, X., Zhao, N., Li, W., He, L. Studies on the interaction of aminocarb with calf thymus DNA by spectroscopic methods. Pestic. Biochem. Physiol. 2010, 98, 206–212; https://doi.org/10.1016/j.pestbp.2010.06.008.Suche in Google Scholar

52. Xu, B., Jiao, K., Sun, W., Zhang, X. Recognition and determination of DNA using victoria blue b as electrochemical probe. Int. J. Electrochem. Sci. 2007, 2, 406–417; https://doi.org/10.1016/s1452-3981(23)17082-9.Suche in Google Scholar

53. Lourenço, T. C., de Mello, L. R., Icimoto, M. Y., Bicev, R. N., Hamley, I. W., Castelletto, V., Nakaie, C. R., da Silva, E. R. DNA-templated self-assembly of bradykinin into bioactive nanofibrils. Soft Matter 2023, 19, 4869–4879; https://doi.org/10.1039/d3sm00431g.Suche in Google Scholar PubMed

Received: 2023-09-26
Accepted: 2023-11-05
Published Online: 2023-11-20
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2023-0365/html
Button zum nach oben scrollen