Potential of Gd-based nanocomposites (GdFeO3) as photocatalysts for the degradation of organic pollutants: a review
Abstract
Gadolinium-based photocatalysts have gained interest in the past few years for their exceptional qualities and are currently being explored as potential photocatalysts for the degradation of organic pollutants and environment restoration. This review paper presents an in-depth examination of the photo-catalytic capabilities of Gadolinium-based nanoparticles (Gd-NPs) and their wide range of applications in the treatment of wastewater and other pollutants. The production processes, optimization variables, modifying procedures, diverse applications, and anti-stokes-up transformation features of Gd-NPs (GdFeO3) have been discussed. Furthermore, it also intends to better understand the redox properties, charge transport, bandgap tenability, blemish management and harmful effects of Gd photocatalysts. The disadvantages of Gadolinium-based small particles remained reviewed and addressed with modified approaches. These findings of literature suggest that Gd-NPs, nano-composite material/heterojunctions, or upconversion nanomaterials are being intensively reported in literature as photocatalytic materials. As a whole, this study offers light on current breakthroughs in Gd-based nanomaterials in regard to their uses in pollution elimination, and to control over environmental pollution and toxicity.
-
Research ethics: Not Applicable.
-
Research funding: Not applicable.
-
Conflict of interest: The authors declare no conflicts of interest regarding this article.
-
Author contributions: FA and MI wrote the paper. MZ, ZF, and MNK revised the paper. Final proof reading was done by MZ. All authors have read and agreed to the published version of the manuscript.
-
Data availability: No data is associated with this publication.
References
1. Agceli, G. K., Hammachi, H., Kodal, S. P., Cihangir, N., Aksu, Z. A novel approach to synthesize TiO2 nanoparticles: biosynthesis by using Streptomyces sp. HC1. J. Inorg. Organomet. Polym. Mater. 2020, 30, 3221–3229; https://doi.org/10.1007/s10904-020-01486-w.Suche in Google Scholar
2. Ahmed, M. A., El-Katori, E. E., Gharni, Z. H. Photocatalytic degradation of methylene blue dye using Fe2O3/TiO2 nanoparticles prepared by sol–gel method. J. Alloys Comp. 2013, 553, 19–29; https://doi.org/10.1016/j.jallcom.2012.10.038.Suche in Google Scholar
3. Ikram, M., Naeem, M., Zahoor, M., Hanafiah, M. M., Oyekanmi, A. A., Ullah, R., Farraj, D. A. A., Elshikh, M. S., Zekker, I., Gulfam, N. Biological degradation of the azo dye basic orange 2 by Escherichia coli: a sustainable and ecofriendly approach for the treatment of textile wastewater. Water 2022, 14, 2063; https://doi.org/10.3390/w14132063.Suche in Google Scholar
4. Ikram, M., Naeem, M., Zahoor, M., Hanafiah, M. M., Oyekanmi, A. A., Shah, A. B., Mahnashi, M. H., Al Ali, A., Jalal, N. A., Bantun, F., Sadiq, A. Biodegradation of azo dye methyl red by Pseudomonas aeruginosa: optimization of process conditions. Int. J. Environ. Res. Public Health 2022, 19, 9962; https://doi.org/10.3390/ijerph19169962.Suche in Google Scholar PubMed PubMed Central
5. Ikram, M., Naeem, M., Zahoor, M., Hanafiah, M. M., Oyekanmi, A. A., Islam, N. U., Ullah, M., Mahnashi, M. H., Ali, A. A., Jalal, N. A., Bantun, F., Momenah, A. M., Sadiq, A. Bacillus subtilis: as an efficient bacterial strain for the reclamation of water loaded with textile azo dye, Orange II. Int. J. Mol. Sci. 2022, 23, 10637; https://doi.org/10.3390/ijms231810637.Suche in Google Scholar PubMed PubMed Central
6. Ullah Khan, A., Zahoor, M., Ur Rehman, M., Ikram, M., Zhu, D., Umar, M. N., Ullah, R., Ali, E. A. Bioremediation of azo dye Brown 703 by Pseudomonas aeruginosa: an effective treatment technique for dye-polluted wastewater. Microbiol. Res. 2023, 14, 1049–1066; https://doi.org/10.3390/microbiolres14030070.Suche in Google Scholar
7. Ikram, M., Zahoor, M., Batiha, G. E. S. Biodegradation and decolorization of textile dyes by bacterial strains: a biological approach for wastewater treatment. Z. Phy. Chem. 2021, 235, 1381–1393; https://doi.org/10.1515/zpch-2020-1708.Suche in Google Scholar
8. Ikram, M., Zahoor, M., Naeem, M., Islam, N. U., Shah, A. B., Shahzad, B. Bacterial oxidoreductive enzymes as molecular weapons for the degradation and metabolism of the toxic azo dyes in wastewater: a review. Z. Phys. Chem. 2023, 137, 187–209; https://doi.org/10.1515/zpch-2022-0150.Suche in Google Scholar
9. Ikram, M., Zahoor, M., Khan, E., Khayam, S. M. U. Biodegradation of novacron turqueiose (reactive blue 21) by Pseudomonas aeruginosa. J. Chem. Soc. Pak. 2020, 42, 737–745.10.52568/000677/JCSP/42.05.2020Suche in Google Scholar
10. Wei, Y., Cheng, Z., Lin, J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chem. Soc. Rev. 2019, 48, 310–350; https://doi.org/10.1039/c8cs00740c.Suche in Google Scholar PubMed
11. Wang, L., Zhou, H., Hu, J., Huang, B., Sun, M., Dong, B., Zheng, G., Huang, Y., Chen, Y., Li, L., Xu, Z., Liu, Z., Chen, Q., Sun, L. D., Yan, C. H. A Eu3+–Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science 2019, 363, 265–270; https://doi.org/10.1126/science.aau5701.Suche in Google Scholar PubMed
12. Arun, B., Akshay, V. R., Vasundhara, M. Observation of enhanced magnetic entropy change near room temperature in Sr-site deficient La 0.67 Sr 0.33 MnO 3 manganite. RSC Adv. 2019, 9, 23598–23606; https://doi.org/10.1039/c9ra04973h.Suche in Google Scholar PubMed PubMed Central
13. Li, F., Cabral, M. J., Xu, B., Cheng, Z., Dickey, E. C., LeBeau, J. M., Wang, J., Luo, J., Taylor, S., Hackenberger, W., Bellaiche, L., Xu, Z., Chen, L. Q., Shrout, T. R., Zhang, S. Giant piezoelectricity of Sm-doped Pb (Mg1/3Nb2/3) O3-PbTiO3 single crystals. Science 2019, 364, 264–268; https://doi.org/10.1126/science.aaw2781.Suche in Google Scholar PubMed
14. Saha, R., Sundaresan, A., Rao, C. N. R. Novel features of multiferroic and magnetoelectric ferrites and chromites exhibiting magnetically driven ferroelectricity. Mater. Horiz. 2014, 1, 20–31; https://doi.org/10.1039/c3mh00073g.Suche in Google Scholar
15. Gao, X., Zhou, B., Yuan, R. Doping a metal (Ag, Al, Mn, Ni and Zn) on TiO2 nanotubes and its effect on Rhodamine B photocatalytic oxidation. Environ. Eng. Res. 2015, 20, 329–335; https://doi.org/10.4491/eer.2015.062.Suche in Google Scholar
16. Hou, C., Liu, H., Li, Y. The preparation of three-dimensional flower-like TiO 2/TiOF2 photocatalyst and its efficient degradation of tetracycline hydrochloride. RSC Adv. 2021, 11, 14957–14969; https://doi.org/10.1039/d1ra01772a.Suche in Google Scholar PubMed PubMed Central
17. Ghoderao, K. P., Jamble, S. N., Kale, R. B. Influence of reaction temperature on hydrothermally grown TiO2 nanorods and their performance in dye-sensitized solar cells. Superlattice. Microst. 2018, 124, 121–130; https://doi.org/10.1016/j.spmi.2018.09.038.Suche in Google Scholar
18. Daud, A., Warsi, M. F., Zulfiqar, S., Agboola, P. O., Rehman, A. U., Shakir, I. Fabrication of GdFO3-Carbon nanotubes nanocomposites for enhanced photocatalytic applications. Ceram. Int. 2020, 46, 12884–12890; https://doi.org/10.1016/j.ceramint.2020.01.205.Suche in Google Scholar
19. Maity, R., Dutta, A., Halder, S., Shannigrahi, S., Mandal, K., Sinha, T. P. Enhanced photocatalytic activity, transport properties and electronic structure of Mn doped GdFeO 3 synthesized using the sol–gel process. Phys. Chem. Chem. Phys. 2021, 23, 16060–16076; https://doi.org/10.1039/d1cp00621e.Suche in Google Scholar PubMed
20. Li, L., Wang, F., Feng, J., Guo, S., Xu, M., Wang, L., Quan, G. Step-scheme GdFeO3/g-C3N4 heterostructures with outstanding photocatalytic activity. J. Mater. Sci. Mater Electron. 2021, 32, 16400–16410; https://doi.org/10.1007/s10854-021-06193-x.Suche in Google Scholar
21. Hunagund, S. M., Desai, V. R., Barretto, D. A., Pujar, M. S., Kadadevarmath, J. S., Vootla, S., Sidarai, A. H. Photocatalysis effect of a novel green synthesis gadolinium doped titanium dioxide nanoparticles on their biological activities. J. Photochem. Photobiol. A.Chem. 2017, 346, 159–167; https://doi.org/10.1016/j.jphotochem.2017.06.003.Suche in Google Scholar
22. McDonald, J. S., McDonald, R. J. MR imaging safety considerations of gadolinium-based contrast agents: gadolinium retention and nephrogenic systemic fibrosis. Magn. Reson. Imaging Clin. 2020, 28, 497–507; https://doi.org/10.1016/j.mric.2020.06.001.Suche in Google Scholar PubMed
23. Harini, G., Balasurya, S., Khan, S. S. Recent advances on gadolinium-based nano-photocatalysts for environmental remediation and clean energy production: properties, fabrication, defect engineering and toxicity. J. Clean. Prod. 2022, 345, 131139; https://doi.org/10.1016/j.jclepro.2022.131139.Suche in Google Scholar
24. Merino, N. A., Barbero, B. P., Ruiz, P., Cadús, L. E. Synthesis, characterisation, catalytic activity and structural stability of LaCo1−yFeyO3±λ perovskite catalysts for combustion of ethanol and propane. J. Catal. 2006, 240, 245–257; https://doi.org/10.1016/j.jcat.2006.03.020.Suche in Google Scholar
25. Mccammon, C. Crystal chemistry of iron-containing perovskites. Phase Transitions 1996, 58, 26; https://doi.org/10.1080/01411599608242391.Suche in Google Scholar
26. Mueller, D. N., De Souza, R. A., Yoo, H. I., Martin, M. Phase stability and oxygen nonstoichiometry of highly oxygen-deficient perovskite-type oxides: a case study of (Ba, Sr)(Co, Fe) O3− δ. Chem. Mater. 2012, 24, 269–274; https://doi.org/10.1021/cm2033004.Suche in Google Scholar
27. Emsley, J. Nature’s Building Blocks: An AZ Guide to the Elements; Oxford University Press: Oxford, 2011.Suche in Google Scholar
28. Kumar Padhi, D., Pradhan, G. K., Parida, K. M., Singh, S. K. Facile fabrication of Gd (OH)3 nanorod/RGO composite: synthesis, characterisation and photocatalytic reduction of Cr (VI). J. Chem. Eng. 2004, 255, 78–88; https://doi.org/10.1016/j.cej.2014.06.039.Suche in Google Scholar
29. Deng, H., Chen, F., Yang, C., Chen, M., Li, L., Chen, D. Effect of Eu doping concentration on fluorescence and magnetic resonance imaging properties of Gd2O3: Eu3+ nanoparticles used as dual-modal contrast agent. Nanotechnol 2018, 29, 415601; https://doi.org/10.1088/1361-6528/aad347.Suche in Google Scholar PubMed
30. Dhanalakshmi, S., Senthil Kumar, P., Karuthapandian, S., Muthuraj, V., Prithivikumaran, N. Design of Gd2O3 nanorods: a challenging photocatalyst for the degradation of neurotoxicity chloramphenicol drug. J. Mater. Sci.: Mater. Electron. 2019, 30, 3744–3752; https://doi.org/10.1007/s10854-018-00656-4.Suche in Google Scholar
31. Mkhalid, I. A. Photocatalytic remediation of atrazine under visible light radiation using Pd-Gd2O3 nanospheres. J. Alloys Compd. 2016, 682, 766–772; https://doi.org/10.1016/j.jallcom.2016.05.015.Suche in Google Scholar
32. Haron, W., Wisitsoraat, A., Sirimahachai, U., Wongnawa, S. A simple synthesis and characterization of LaMO3 (M = Al, Co, Fe, Gd) perovskites via chemical co-precipitation method. Songklanakarin J. Sci. Technol. 2018, 40, 484–491.Suche in Google Scholar
33. Jayanthi, G., Sumathi, S., Kannan, K., Andal, V., Murugan, S. A review on synthesis, properties, and environmental application of Fe-based perovskite. Adv. Mater. Sci. Eng. 2022, 2022, 1–14; https://doi.org/10.1155/2022/6607683.Suche in Google Scholar
34. Lee, S., Lingamdinne, L. P., Yang, J. K., Chang, Y. Y., Koduru, J. R. Potential electromagnetic column treatment of heavy metal contaminated water using porous Gd2O3-doped graphene oxide nanocomposite: characterization and surface interaction mechanisms. J. Water Process. Eng. 2021, 41, 102083; https://doi.org/10.1016/j.jwpe.2021.102083.Suche in Google Scholar
35. Li, X., Yang, J., Zhang, Y., Zhang, W. Polyethylene glycol in sol–gel precursor to prepare porous Gd2Ti2O7: enhanced photocatalytic activity on Reactive Brilliant Red X-3B degradation. Mater. Sci. Semicond. Process. 2020, 117, 105181; https://doi.org/10.1016/j.mssp.2020.105181.Suche in Google Scholar
36. Butler, M. A., Ginley, D. S., Eibschutz, M. Photoelectrolysis with YFeO3 electrodes. J. Appl. Phys. 1977, 48, 3070–3072; https://doi.org/10.1063/1.324076.Suche in Google Scholar
37. Liu, Z., Zhong, Y., Hu, Z., Zhang, W., Zhang, X., Ji, X., Wang, X. Modification of ZIF-8 nanocomposite by a Gd atom doped TiO2 for high efficiency photocatalytic degradation of neutral red dye: an experimental and theoretical study. J. Mol. Liq. 2023, 380, 121729; https://doi.org/10.1016/j.molliq.2023.121729.Suche in Google Scholar
38. Kalisamy, P., Hossain, M. S., Macadangdang, R. R.Jr, Madhubala, V., Palanivel, B., Venkatachalam, M., Massoud, E. E. S., Sreedevi, G. ZnO coupled F-doped g-C3N4: Z-scheme heterojunction for visible-light driven photocatalytic degradation reaction. Inorg. Chem. Commun. 2022, 135, 109102; https://doi.org/10.1016/j.inoche.2021.109102.Suche in Google Scholar
39. Shkir, M., Palanivel, B., Khan, A., Ahmad, N., Mani, A. Tailoring the structural, optical and remarkably enhanced photocatalytic activities of nickel oxide nanostructures through cobalt doping. Surf. Interfac. 2021, 27, 101515; https://doi.org/10.1016/j.surfin.2021.101515.Suche in Google Scholar
40. Wang, S., Chen, Z., Zhao, Y., Sun, C., Li, J. High photocatalytic activity over starfish-like La-doped ZnO/SiO2 photocatalyst for malachite green degradation under visible light. J. Rare Earths 2021, 39, 772–780; https://doi.org/10.1016/j.jre.2020.04.009.Suche in Google Scholar
41. Palanivel, B., Macadangdang, R. R.Jr, Hossain, M. S., Alharthi, F. A., Kumar, M., Chang, J. H., Gedi, S. Rare earth (Gd, La) co-doped ZnO nanoflowers for direct sunlight driven photocatalytic activity. J. Rare Earths 2023, 41, 77–84; https://doi.org/10.1016/j.jre.2022.01.009.Suche in Google Scholar
42. Yadav, R. V., Yadav, R. S., Bahadur, A., Singh, A. K., Rai, S. B. Enhanced quantum cutting via Li+ doping from a Bi3+/Yb3+-codoped gadolinium tungstate phosphor. Inorg.Chem. 2016, 55, 10928–10935; https://doi.org/10.1021/acs.inorgchem.6b01439.Suche in Google Scholar PubMed
43. Rahimi-Nasrabadi, M., Pourmortazavi, S. M., Aghazadeh, M., Ganjali, M. R., Karimi, M. S., Novrouzi, P. Optimizing the procedure for the synthesis of nanoscale gadolinium (III) tungstate as efficient photocatalyst. J. Mater. Sci. Mater. Electron. 2017, 28, 3780–3788; https://doi.org/10.1007/s10854-016-5988-x.Suche in Google Scholar
44. Periyasamy, S., Vinoth Kumar, J., Chen, S. M., Annamalai, Y., Karthik, R., Erumaipatty Rajagounder, N. Structural insights on 2D gadolinium tungstate nanoflake: a promising electrocatalyst for sensor and photocatalyst for the degradation of postharvest fungicide (carbendazim). ACS Appl. Mater. Interfaces 2019, 11, 37172–37183; https://doi.org/10.1021/acsami.9b07336.Suche in Google Scholar PubMed
45. Chandel, N., Sharma, K., Sudhaik, A., Raizada, P., Hosseini-Bandegharaei, A., Thakur, V. K., Singh, P. Magnetically separable ZnO/ZnFe2O4 and ZnO/CoFe2O4 photocatalysts supported onto nitrogen doped graphene for photocatalytic degradation of toxic dyes. Arabian J. Chem. 2020, 13, 4324–4340; https://doi.org/10.1016/j.arabjc.2019.08.005.Suche in Google Scholar
46. Salavati-Niasari, M., Hosseinzadeh, G., Davar, F. Synthesis of lanthanum hydroxide and lanthanum oxide nanoparticles by sonochemical method. J. Alloys Compd. 2011, 509, 4098–4103; https://doi.org/10.1016/j.jallcom.2010.07.083.Suche in Google Scholar
47. Mohassel, R., Sobhani, A., Salavati-Niasari, M., Goudarzi, M. Pechini synthesis and characteristics of Gd2CoMnO6 nanostructures and its structural, optical and photocatalytic properties. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 204, 232–240; https://doi.org/10.1016/j.saa.2018.06.050.Suche in Google Scholar PubMed
48. Liu, B., Zhou, K. Recent progress on graphene-analogous 2D nanomaterials: properties, modeling and applications. Prog. Mater. Sci. 2019, 100, 99–169; https://doi.org/10.1016/j.pmatsci.2018.09.004.Suche in Google Scholar
49. Majid, F., Mirza, S. T., Riaz, S., Naseem, S. Sol–gel synthesis of BiFeO3 nanoparticles. Mater. Today: Proc. 2015, 2, 5293–5297; https://doi.org/10.1016/j.matpr.2015.11.038.Suche in Google Scholar
50. Theingi, M., Tun, K. T., Aung, N. N. Preparation, characterization and optical property of LaFeO3 nanoparticles via sol–gel combustion method. Sci. Med. J. 2019, 1, 151–157; https://doi.org/10.28991/scimedj-2019-0103-5.Suche in Google Scholar
51. Liu, C., Wang, W., Chen, D. Hydrogen-rich syngas production from chemical looping gasification of biomass char with CaMn1–xFexO3. Energy Fuel. 2018, 32, 9541–9550; https://doi.org/10.1021/acs.energyfuels.8b01836.Suche in Google Scholar
52. Aziz, A., Ahmed, E., Ashiq, M. N., Irfan, M., Ismail, M., Ali, I., Khan, M. A. Impact of Gd and Cu substitution on dielectric and magnetic properties of MnFeO3 multiferroic materials. Phys. B: Condens. Matter. 2019, 571, 199–203; https://doi.org/10.1016/j.physb.2019.07.024.Suche in Google Scholar
53. Shabbir, G., Qureshi, A. H., Saeed, K. Nano-crystalline LaFeO3 powders synthesized by the citrate–gel method. Mater. Lett. 2006, 60, 3706–3709; https://doi.org/10.1016/j.matlet.2006.03.093.Suche in Google Scholar
54. Çoban Özkan, D., Türk, A., Celik, E. Synthesis and characterizations of sol–gel derived LaFeO3 perovskite powders. J. Mater. Sci. Mater. Electron. 2020, 31, 22789–22809; https://doi.org/10.1007/s10854-020-04803-8.Suche in Google Scholar
55. Gómez-Cuaspud, J. A., Vera-López, E., Carda-Castelló, J. B., Barrachina-Albert, E. One-step hydrothermal synthesis of LaFeO3 perovskite for methane steam reforming. React. Kinet. Mech. Catal. 2017, 120, 167–179; https://doi.org/10.1007/s11144-016-1092-8.Suche in Google Scholar
56. Sazali, M. S., Yaakob, M. K., Mohamed, Z., Mamat, M. H., Hassan, O. H., Kaus, N. H. M., Yahya, M. Z. A. Chitosan-assisted hydrothermal synthesis of multiferroic BiFeO3: effects on structural, magnetic and optical properties. Reults Phys. 2019, 15, 102740; https://doi.org/10.1016/j.rinp.2019.102740.Suche in Google Scholar
57. Syed, A., Siddaramanna, A., Elgorban, A. M., Hakeem, D. A., Nagaraju, G. Hydrogen peroxide-assisted hydrothermal synthesis of bifeo3 microspheres and their dielectric behavior. Magnetochemistry 2020, 6, 42, https://doi.org/10.3390/magnetochemistry6030042.Suche in Google Scholar
58. Muneeswaran, M., Jegatheesan, P., Giridharan, N. V. Synthesis of nanosized BiFeO3 powders by co-precipitation method. J. Exp. Nanosci. 2013, 8, 341–346; https://doi.org/10.1080/17458080.2012.685954.Suche in Google Scholar
59. Biasotto, G., Simões, A. Z., Foschini, C. R., Zaghete, M. A., Varela, J. A., Longo, E. Microwave-hydrothermal synthesis of perovskite bismuth ferrite nanoparticles. Mater. Res. Bull. 2011, 46, 2543–2547; https://doi.org/10.1016/j.materresbull.2011.08.010.Suche in Google Scholar
60. Khorasani-Motlagh, M., Noroozifar, M., Yousefi, M., Jahani, S. Chemical synthesis and characterization of perovskite NdFeO3 nanocrystals via a co-precipitation method. Int. J. Nanotechnol. Nanosci. 2013, 9, 7–14.10.1007/s13738-012-0100-9Suche in Google Scholar
61. Fernández-Barahona, I., Muñoz-Hernando, M., Herranz, F. Microwave-driven synthesis of iron-oxide nanoparticles for molecular imaging. Molecules 2019, 24, 1224; https://doi.org/10.3390/molecules24071224.Suche in Google Scholar PubMed PubMed Central
62. Komarneni, S., Menon, V. C., Li, Q. H., Roy, R., Ainger, F. Microwave hydrothermal processing of BiFeO3 and CsAl2PO6. J.Am. Ceram. Soc. 1996, 79, 1409–1412; https://doi.org/10.1111/j.1151-2916.1996.tb08605.x.Suche in Google Scholar
63. Joshi, U. A., Jang, J. S., Borse, P. H., Lee, J. S. Microwave synthesis of single-crystalline perovskite Bi Fe O3 nanocubes for photoelectrode and photocatalytic applications. Appl. Phys. Lett. 2008, 92, 242106; https://doi.org/10.1063/1.2946486.Suche in Google Scholar
64. Zhu, X., Hang, Q., Xing, Z., Yang, Y., Zhu, J., Liu, Z., Ming, N., Zhou, P., Song, Y., Li, Z., Yu, T., Zou, Z. Microwave hydrothermal synthesis, structural characterization, and visible light photocatalytic activities of single crystalline bismuth ferric nanocrystals. J. Am. Ceram. Soc. 2011, 94, 2688–2693; https://doi.org/10.1111/j.1551-2916.2011.04430.x.Suche in Google Scholar
65. Galasso, F. S. Structure, Properties and Preparation of Perovskite-type Compounds: International Series of Monographs in Solid State Physics, Vol. 5; Elsevier, 2013.Suche in Google Scholar
66. Phokha, S., Pinitsoontorn, S., Maensiri, S., Rujirawat, S. Structure, optical and magnetic properties of LaFeO3 nanoparticles prepared by polymerized complex method. J. Solgel. Sci. Technol. 2014, 71, 333–341; https://doi.org/10.1007/s10971-014-3383-8.Suche in Google Scholar
67. Anikina, P. V., Markov, A. A., Patrakeev, M. V., Leonidov, I. A., Kozhevnikov, V. L. High-temperature transport and stability of SrFe1− xNbxO3− δ. Solid State Sci. 2009, 11, 1156–1162; https://doi.org/10.1016/j.solidstatesciences.2009.02.016.Suche in Google Scholar
68. Sumithra, S., Jaya, N. V. Structural, optical and magnetization studies of Fe-doped CaSnO3 nanoparticles via hydrothermal route. J. Mater. Sci. Mater. Electron. 2018, 29, 4048–4057; https://doi.org/10.1007/s10854-017-8348-6.Suche in Google Scholar
69. Lan, R., Cowin, P. I., Sengodan, S., Tao, S. A perovskite oxide with high conductivities in both air and reducing atmosphere for use as electrode for solid oxide fuel cells. Sci. Rep. 2016, 6, 31839; https://doi.org/10.1038/srep31839.Suche in Google Scholar PubMed PubMed Central
70. Hung, N. T., Bac, L. H., Trung, N. N., Hoang, N. T., Van Vinh, P., Dung, D. D. Room-temperature ferromagnetism in Fe-based perovskite solid solution in lead-free ferroelectric Bi0. 5Na0. 5TiO3 materials. J. Magn. Magn. Mater. 2018, 451, 183–186; https://doi.org/10.1016/j.jmmm.2017.11.015.Suche in Google Scholar
71. Guigoz, V., Balan, L., Aboulaich, A., Schneider, R., Gries, T. Heterostructured thin LaFeO3/g-C3N4 films for efficient photoelectrochemical hydrogen evolution. Int. J. Hydrg.Energy 2020, 45, 17468–17479; https://doi.org/10.1016/j.ijhydene.2020.04.267.Suche in Google Scholar
72. Gao, J., Zhang, Y., Wang, X., Jia, L., Jiang, H., Huang, M., Toghan, A. Nitrogen-doped Sr2Fe1. 5Mo0. 5O6-δ perovskite as an efficient and stable catalyst for hydrogen evolution reaction. Mater. Today Energy 2021, 20, 100695; https://doi.org/10.1016/j.mtener.2021.100695.Suche in Google Scholar
73. Ismael, M., Wark, M. Perovskite-type LaFeO3: photoelectrochemical properties and photocatalytic degradation of organic pollutants under visible light irradiation. Catalysts 2019, 9, 342; https://doi.org/10.3390/catal9040342.Suche in Google Scholar
74. Chang, H., Bjørgum, E., Mihai, O., Yang, J., Lein, H. L., Grande, T., Raaen, S., Zhu, Y. A., Holmen, A., Chen, D. Effects of oxygen mobility in La–Fe-based perovskites on the catalytic activity and selectivity of methane oxidation. ACS Catal. 2020, 10, 3707–3719; https://doi.org/10.1021/acscatal.9b05154.Suche in Google Scholar
75. Nkwachukwu, O. V., Arotiba, O. A. Perovskite oxide–based materials for photocatalytic and photoelectrocatalytic treatment of water. Front.Chem. 2021, 9, 634630; https://doi.org/10.3389/fchem.2021.634630.Suche in Google Scholar PubMed PubMed Central
76. Xia, J., Yin, S., Li, H., Xu, H., Xu, L., Xu, Y. Improved visible light photocatalytic activity of sphere-like BiOBr hollow and porous structures synthesized via a reactable ionic liquid. Dalton Trans. 2011, 40, 5249–5258; https://doi.org/10.1039/c0dt01511c.Suche in Google Scholar PubMed
77. Hu, Z., Chen, D., Wang, S., Zhang, N., Qin, L., Huang, Y. Facile synthesis of Sm-doped BiFeO3 nanoparticles for enhanced visible light photocatalytic performance. Mater. Sci. Eng: B 2017, 220, 1–12; https://doi.org/10.1016/j.mseb.2017.03.005.Suche in Google Scholar
78. Jaffari, Z. H., Lam, S. M., Sin, J. C., Zeng, H. Boosting visible light photocatalytic and antibacterial performance by decoration of silver on magnetic spindle-like bismuth ferrite. Mater. Sci. Semicond. Process. 2019, 101, 103–115; https://doi.org/10.1016/j.mssp.2019.05.036.Suche in Google Scholar
79. Gosavi, P. V., Biniwale, R. B. Pure phase LaFeO3 perovskite with improved surface area synthesized using different routes and its characterization. Mater. Chem.Phys. 2010, 119, 324–329; https://doi.org/10.1016/j.matchemphys.2009.09.005.Suche in Google Scholar
80. Nkwachukwu, O. V., Muzenda, C., Ojo, B. O., Zwane, B. N., Koiki, B. A., Orimolade, B. O., Nkosi, D., Mabuba, N., Arotiba, O. A. Photoelectrochemical degradation of organic pollutants on a La3+ doped BiFeO3 perovskite. Catalysts 2021, 11, 1069; https://doi.org/10.3390/catal11091069.Suche in Google Scholar
81. Geller, S., Wood, E. A. Crystallographic studies of perovskite-like compounds. I. Rare earth orthoferrites and YFeO3, YCrO3, YAlO3. Acta Crystallogr. 1956, 9, 563–568; https://doi.org/10.1107/s0365110x56001571.Suche in Google Scholar
82. Bleaney, B. John Hasbrouck Van Vleck, 13 March 1899-27 October 1980.Suche in Google Scholar
83. Geller, S. Crystal structure of gadolinium orthoferrite, GdFeO3. J.Chem.Phys. 1956, 24, 1236–1239; https://doi.org/10.1063/1.1742746.Suche in Google Scholar
84. Gilleo, M. A. Magnetic properties of a gadolinium orthoferrite, GdFeO3, crystal. J. Chem. Phys. 1956, 24, 1239–1243; https://doi.org/10.1063/1.1742747.Suche in Google Scholar
85. Gilleo, M. A., Geller, S. Magnetic ion interaction in Gd3Mn2 Ge2GaO12 and related garnets. J. Appl. Phys. 1959, 30, S297–S298; https://doi.org/10.1063/1.2185940.Suche in Google Scholar
86. Pyykkö, P. Magically magnetic gadolinium. Nat. Chem. 2015, 7, 680; https://doi.org/10.1038/nchem.2287.Suche in Google Scholar PubMed
87. Dan’Kov, S. Y., Tishin, A. M., Pecharsky, V. K., Gschneidner, K. A. Magnetic phase transitions and the magnetothermal properties of gadolinium. Phys. Rev. B 1998, 57, 3478; https://doi.org/10.1103/physrevb.57.3478.Suche in Google Scholar
88. Li, Y., Li, Q., Wang, H., Zhang, L., Wilkinson, D. P., Zhang, J. Recent progresses in oxygen reduction reaction electrocatalysts for electrochemical energy applications. Electrochem. Energy Rev. 2019, 2, 518–538; https://doi.org/10.1007/s41918-019-00052-4.Suche in Google Scholar
89. Lone, I. H., Khan, H., Jain, A. K., Ahmed, J., Ramanujachary, K. V., Ahmad, T. Metal–organic precursor synthesis, structural characterization, and multiferroic properties of GdFeO3 nanoparticles. ACS omega 2022, 7, 33908–33915; https://doi.org/10.1021/acsomega.2c02809.Suche in Google Scholar PubMed PubMed Central
90. Balamurugan, C., Song, S., Jo, H., Seo, J. GdFeO3 perovskite oxide decorated by group X heterometal oxides and bifunctional oxygen electrocatalysis. ACS Appl. Mater. Interface. 2021, 13, 2788–2798; https://doi.org/10.1021/acsami.0c21169.Suche in Google Scholar PubMed
91. Rao, V. S., Sharma, R., Paul, D. R., Almáši, M., Sharma, A., Kumar, S., Nehra, S. Architecting the Z-scheme heterojunction of Gd2O3/g-C3N4 nanocomposites for enhanced visible-light-induced photoactivity towards organic pollutants degradation. Environ. Sci. Pollut. Res. 2023, 30, 98773–98786.10.1007/s11356-023-25360-7Suche in Google Scholar PubMed
92. Teng, W. A. N. G., Zhaofu, M. E. N. G., Xinxin, W. A. N. G., Amjad, A. L. I., Xuewen, C. A. O., Lin, L. I. U. Mechanism of nitrogen-fluoride co-doped TiO 2/bentonite composites removing tetracycline: a study in the co-doping ratio. Environ. Eng. Res. 2021, 26, 200440.10.4491/eer.2020.440Suche in Google Scholar
93. Wang, M., Wu, Y., Juan, F., Li, Y., Shi, B., Xu, F., Jia, J., Wei, H., Cao, B. Enhanced photocurrent of perovskite solar cells by dual-sensitized β-NaYF4: Nd3+/Yb3+/Er3+ up-conversion nanoparticles. Chem. Phys. Lett. 2021, 763, 138253; https://doi.org/10.1016/j.cplett.2020.138253.Suche in Google Scholar
94. Li, H., Song, H., Lai, Q., Li, Y., Egabaierdi, G., Xu, Z., Yang, S., Li, S., He, H., Zhang, S. A Gd3+-doped blue TiO2 nanotube array anode for efficient electrocatalytic degradation of iohexol. Sep. Purif. Technol. 2022, 301, 122007; https://doi.org/10.1016/j.seppur.2022.122007.Suche in Google Scholar
95. Duo, S., Zhang, J., Zhang, H., Chen, Z., Zhong, C., Liu, T. Synthesis of β–NaYF4: Yb3+, Tm3+@ TiO2 and β–NaYF4: Yb3+, Tm3+@ TiO2@ Au nanocomposites and effective upconversion–driven photocatalytic properties. Opt. Mater. 2016, 62, 240–249; https://doi.org/10.1016/j.optmat.2016.10.005.Suche in Google Scholar
96. Klier, D. T., Kumke, M. U. Upconversion luminescence properties of NaYF4: Yb: Er nanoparticles codoped with Gd3+. J.Phy. Chem. C 2015, 119, 3363–3373; https://doi.org/10.1021/jp5103548.Suche in Google Scholar
97. Mavengere, S., Kim, J. S. UV–visible light photocatalytic properties of NaYF4:(Gd, Si)/TiO2 composites. Appl. Surf. Sci. 2018, 444, 491–496; https://doi.org/10.1016/j.apsusc.2018.03.027.Suche in Google Scholar
98. Anwer, H., Park, J. W. Near-infrared to visible photon transition by upconverting NaYF4: Yb3+, Gd3+, Tm3+@ Bi2WO6 core@ shell composite for bisphenol A degradation in solar light. Appl.Catal.B. 2019, 243, 438–447; https://doi.org/10.1016/j.apcatb.2018.10.074.Suche in Google Scholar
99. Kumah, E. A., Fopa, R. D., Harati, S., Boadu, P., Zohoori, F. V., Pak, T. Human and environmental impacts of nanoparticles: a scoping review of the current literature. BMC Public Health 2023, 23, 1–28; https://doi.org/10.1186/s12889-023-15958-4.Suche in Google Scholar PubMed PubMed Central
100. Akhtar, M. J., Ahamed, M., Alhadlaq, H. Gadolinium oxide nanoparticles induce toxicity in human endothelial HUVECs via lipid peroxidation, mitochondrial dysfunction and autophagy modulation. Nanomaterials 2020, 10, 1675; https://doi.org/10.3390/nano10091675.Suche in Google Scholar PubMed PubMed Central
101. Rogowska, J., Olkowska, E., Ratajczyk, W., Wolska, L. Gadolinium as a new emerging contaminant of aquatic environments. Environ. Toxicol. Chem. 2018, 37, 1523–1534; https://doi.org/10.1002/etc.4116.Suche in Google Scholar PubMed
102. Idée, J. M., Port, M., Raynal, I., Schaefer, M., Le Greneur, S., Corot, C. Clinical and biological consequences of transmetallation induced by contrast agents for magnetic resonance imaging: a review. Fundam. Clin. Pharmacol. 2006, 20, 563–576; https://doi.org/10.1111/j.1472-8206.2006.00447.x.Suche in Google Scholar PubMed
103. Liu, Z., Guo, C., Tai, P., Sun, L., Chen, Z. The exposure of gadolinium at environmental relevant levels induced genotoxic effects in Arabidopsis thaliana (L.). Ecotoxicol. Environ. Saf. 2021, 215, 112138; https://doi.org/10.1016/j.ecoenv.2021.112138.Suche in Google Scholar PubMed
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Review Article
- Potential of Gd-based nanocomposites (GdFeO3) as photocatalysts for the degradation of organic pollutants: a review
- Original Papers
- Bimetallic nanoparticles preparation from metallic organic frameworks, characterization and its applications in reclamation of textile effluents
- Chitosan-coated magnetic nanorods and nanospheres: physicochemical characterizations and potential as methotrexate carriers for targeted drug delivery
- Green synthesis of copper nanoparticles from agro-waste garlic husk
- Noncovalent interactions in N-methylurea crystalline hydrates
- Upcycling of the industrial waste as a sustainable source of axenic fungal strain (Aspergillus oryzae) for scale up enzymatic production with kinetic analysis and Box–Behnken design application
- Kinetics and outer sphere electron transfer of some metallosurfactants by Fe(CN)64− in microheterogenous medium: a detailed thermodynamic approach
- Bonding and noncovalent interactions effects in 2,6-dimethylpiperazine-1,4-diium oxalate oxalic acid: DFT calculation, topological analysis, NMR and molecular docking studies
- Effect of ionic strength on DNA–dye interactions of Victoria blue B and methylene green using UV–visible spectroscopy
- Synthesis, X-ray diffraction, DFT, and molecular docking studies of isonicotinohydrazide derivative
Artikel in diesem Heft
- Frontmatter
- Review Article
- Potential of Gd-based nanocomposites (GdFeO3) as photocatalysts for the degradation of organic pollutants: a review
- Original Papers
- Bimetallic nanoparticles preparation from metallic organic frameworks, characterization and its applications in reclamation of textile effluents
- Chitosan-coated magnetic nanorods and nanospheres: physicochemical characterizations and potential as methotrexate carriers for targeted drug delivery
- Green synthesis of copper nanoparticles from agro-waste garlic husk
- Noncovalent interactions in N-methylurea crystalline hydrates
- Upcycling of the industrial waste as a sustainable source of axenic fungal strain (Aspergillus oryzae) for scale up enzymatic production with kinetic analysis and Box–Behnken design application
- Kinetics and outer sphere electron transfer of some metallosurfactants by Fe(CN)64− in microheterogenous medium: a detailed thermodynamic approach
- Bonding and noncovalent interactions effects in 2,6-dimethylpiperazine-1,4-diium oxalate oxalic acid: DFT calculation, topological analysis, NMR and molecular docking studies
- Effect of ionic strength on DNA–dye interactions of Victoria blue B and methylene green using UV–visible spectroscopy
- Synthesis, X-ray diffraction, DFT, and molecular docking studies of isonicotinohydrazide derivative