Startseite Naturwissenschaften Kinetics and outer sphere electron transfer of some metallosurfactants by Fe(CN)64− in microheterogenous medium: a detailed thermodynamic approach
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Kinetics and outer sphere electron transfer of some metallosurfactants by Fe(CN)64− in microheterogenous medium: a detailed thermodynamic approach

  • Karuppiah Nagaraj EMAIL logo , Raja Kaliyaperumal , Subramaniam Kamalesu , Chandramohan Govindasamy , Allur Subramaniyan Sivakumar , Suriyan Radha , Manda Saritha und Chelladurai Karuppiah
Veröffentlicht/Copyright: 28. November 2023

Abstract

We report the rate of electron transfer reaction of complexes, cis-[M(ED)2(DOD)2]3+ (1), cis-[M(DP)2(DOD)2]3+ (2), cis-[M(TRE)(DOD)2]3+ (3), cis-[M(bpy)2(DOD)2]3+ (4) and cis-[M(PA)2(DOD)2]3+ (5) (M:Co, ED: ethylenediamine, TRE: triethylenetetramine, DP: diaminopropane, PA: phenanthroline, C12H25NH2: dodecylamine (DOD) and bpy: bipyridine) and hexacyanoferrate ion in surface active ionic liquids (BMIM)Br were studied at 298–323 K by electronic absorption spectroscopy. Surfactant complexes 4 and 5, which have a higher ETR than complexes 1–3 based on the results obtained, have been explained based on the states of aggregation and hydrophobic transformations between the hydrocarbon portion of the surfactant compounds and (BMIM)Br. As a result, surface-active agent micelles in (BMIM)Br and increase ETR in between the system. The investigation of kinetic statistics outcomes suggest that reduction reaction between surface-active agent Co(III) complexes and hexacyanoferrate occurs via 2nd order and the ET is proposed as outer sphere. The remarkable increase in the rate for the ETR in (BMIM)Br with increase in the concentration of Co(III) complexes from 1–5. This can be attributing due to the fact those reactants with opposite charges and the amphipilicity of the ligand. The OSET of kinetics have been confirmed by the enthalpy and entropy (ΔS# and ΔH#) factors, and the isokinetic plots (ΔS# versus ΔH#) have shown that the reaction’s mechanism does not alter during the (BMIM)Br medium.


Corresponding author: Karuppiah Nagaraj, School of Pharmacy, National Forensic Sciences University, 6M56+XP8, Police Bhavan Rd, Sector 9, Gandhinagar, Gujarat 382007, India, E-mail:

Funding source: King Saud University

Award Identifier / Grant number: Unassigned

Funding source: Researchers Supporting Project

Award Identifier / Grant number: RSPD2023R712

Acknowledgments

This project was supported by Researchers Supporting Project number (RSPD2023R712), King Saud University, Riyadh, Saudi Arabia. Dr. KN thanks to the School of Pharmacy, National Forensic Sciences University for providing the research facilities to carry out the research work.

  1. Research ethics: We followed research Ethics.

  2. Author contributions: All the authors have contributed equally for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors declare no conflict of interest financial or otherwise.

  4. Research funding: Researchers Supporting Project (RSPD2023R712) King Saud University, Riyadh, Saudi Arabia.

  5. Data availability: Data available on request.

References

1. Borra, E. F., Seddiki, O., Angel, R., Eisenstein, D., Hickson, P., Seddon, K. R., Worden, S. P. Deposition of metal films on an ionic liquid as a basis for a lunar telescope. Nature 2007, 447, 979; https://doi.org/10.1038/nature05909.Suche in Google Scholar PubMed

2. Rogers, R. D., Seddon, K. R. Chemistry. Ionic liquids-solvents of the future? Science 2003, 302, 792; https://doi.org/10.1126/science.1090313.Suche in Google Scholar PubMed

3. Zhao, H., Holladay, J. E., Brown, H., Zhang, Z. C. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 2007, 316, 1597; https://doi.org/10.1126/science.1141199.Suche in Google Scholar PubMed

4. Paternostre, M. T., Roux, M., Rigaud, J. L. Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. 2. Incorporation of the light-driven proton pump bacteriorhodopsin. Biochemistry 1988, 27, 2668; https://doi.org/10.1021/bi00408a006.Suche in Google Scholar PubMed

5. Almog, S., Litman, B. J., Wimley, W., Cohen, J., Wachtel, E. J., Barenholz, Y., Ben-Shaul, A., Lichtenberg, D. Document details-states of aggregation and phase transformations in mixtures of phosphatidylcholine and octyl glucoside. Biochemistry 1990, 29, 4582–4592; https://doi.org/10.1021/bi00471a012.Suche in Google Scholar PubMed

6. Javadian, S., Ruhi, V., Heydari, A., Asadzadeh Shahir, A., Youse, A., Akbari, J. Self-assembled CTAB nanostructures in aqueous/ionic liquid systems: effects of hydrogen bonding. Ind. Eng. Chem. Res. 2013, 52, 4517; https://doi.org/10.1021/ie302411t.Suche in Google Scholar

7. Blesic, M., Marques, M. H., Plechkova, N. V., Seddon, K. R., Rebelo, L. P. N., Lopes, A. Self-aggregation of ionic liquids: micelle formation in aqueous solution. Green Chem. 2007, 9, 481; https://doi.org/10.1039/b615406a.Suche in Google Scholar

8. KristinSiddharth, F., Pandey, M. Surfactant aggregation within room-temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Langmuir 2004, 20, 33; https://doi.org/10.1021/la035596t.Suche in Google Scholar PubMed

9. Grand, D., Hautecloque, S. Electron transfer from nucleophilic species to N,N,N′,N′-tetramethylbenzidine cation in micellar media: effect of interfacial electrical potential on cation decay. J. Phys. Chem. 1990, 94, 837; https://doi.org/10.1021/j100365a060.Suche in Google Scholar

10. Barber, D. J. W., Morris, D. A. N., Thomas, J. K. Laser induced photoionization in lipid aggregates. Chem. Phys. Lett. 1976, 37, 481; https://doi.org/10.1016/0009-2614(76)85019-1.Suche in Google Scholar

11. Almagren, M., Grieser, F., Thomas, J. K. One-electron redox potentials and rate of electron transfer in aqueous micellar solution. Partially solubilized quinines. J. Phys. Chem. 1979, 83, 3232; https://doi.org/10.1021/j100488a009.Suche in Google Scholar

12. Genç, S., Dege, N., Çetin, A., Cansız, A., Şekerci, M., Dinçer, M. 3-(2-Hydroxyphenyl)-4-phenyl-1H-1, 2, 4-triazole-5 (4H)-thione. Acta Crystallogr. Sect. E: Struct. Rep. Online 2004, 60, 1580–1582; https://doi.org/10.1107/s1600536804020367.Suche in Google Scholar

13. Ilmi, R., Kansız, S., NawalAl-Rasbi, K., Dege, N., Raithby, P. R., Khan, M. S. Towards white light emission from a hybrid thin film of a self-assembled ternary samarium (III) complex. New J. Chem. 2020, 44, 5673–5683; https://doi.org/10.1039/c9nj06287d.Suche in Google Scholar

14. Muslim, M., Ali, A., Neogi, I., Dege, N., Shahid, M., Ahmad, M. Facile synthesis, topological study, and adsorption properties of a novel Co(II)-based coordination polymer for adsorptive removal of methylene blue and methyl orange dyes. Polyhedron 2021, 210, 115519; https://doi.org/10.1016/j.poly.2021.115519.Suche in Google Scholar

15. Demir, S., Cakmak, S., Dege, N., Kutuk, H., Odabasoglu, M., Kepekci, R. A. A novel 3-acetoxy-2-methyl-n-(4-methoxyphenyl) benzamide: molecular structural describe, antioxidant activity with use X-ray diffractions and DFT calculations. J. Mol. Struct. 2015, 1100, 582–591; https://doi.org/10.1016/j.molstruc.2015.08.014.Suche in Google Scholar

16. Raza, M. A., Farwa, U., Danish, M., Ozturk, S., Aagar, A. A., Dege, N., Ur Rehman, S., AbdullahAl-Sehemi, G. Computational modeling of imines based anti-oxidant and anti-esterases compounds: synthesis, single crystal and in-vitro assessment. Comput. Biol. Chem. 2023, 104, 107880; https://doi.org/10.1016/j.compbiolchem.2023.107880.Suche in Google Scholar PubMed

17. Kansiz, S., Dege, N., Ozturk, S., Akdemir, N., Tarcan, E., Ali, A., Saif, E. Crystal structure and Hirshfeld surface analysis of 2-methyl-3-nitro-N-[(E)-(5-nitrothiophen-2-yl) methylidene] aniline. Acta Crystallogr. E: Crystallogr. Commun. 2021, 77, 138–141; https://doi.org/10.1107/s2056989021000529.Suche in Google Scholar PubMed PubMed Central

18. Simsek, O., Ashfaq, M., Tahir, M. N., Ozturk, S., Agar, E. Synthesis and charaterizations of the Schiff base derived from 2-hydroxy-5-nitrobenzaldehyde alongwith hirshfeld surface analysis and computational study. J. Struct. Chem. 2023, 64, 942–953; https://doi.org/10.26902/jsc_id111187.Suche in Google Scholar

19. Simsek, O., Dincer, M., Dege, N., Yilmaz, I., Cukurovali, A. Crystal structure and Hirshfeld surface analysis of (Z)-4-{[4-(3-methyl-3-phenylcyclobutyl)thiazol-2-yl]amino}-4-oxobut-2-enoic acid. Acta Crystallogr. E: Crystallogr. Commun. 2022, 78, 120–124; https://doi.org/10.1107/s2056989022000032.Suche in Google Scholar PubMed PubMed Central

20. Ramalingam, A., Kansız, S., Dege, N., Sambandam, S. Synthesis, crystal structure, DFT calculations and hirshfeld surface analysis of 3-chloro-2, 6-bis (4-chlorophenyl)-3-methylpiperidin-4-one. J. Chem. Crystallogr. 2021, 51, 273–287; https://doi.org/10.1007/s10870-020-00852-3.Suche in Google Scholar

21. Sen, P., Atmaca, G. Y., Erdogmus, A., Kanmazalp, S. D., Dege, N., Zeki Yildiz, S. Peripherally tetra-benzimidazole units-substituted zinc (II) phthalocyanines: synthesis, characterization and investigation of photophysical and photochemical properties. J. Lumin. 2018, 194, 123–130; https://doi.org/10.1016/j.jlumin.2017.10.022.Suche in Google Scholar

22. Wishart, J. F. Energy applications of ionic liquids. Energy Environ. Sci. 2009, 2, 956; https://doi.org/10.1039/b906273d.Suche in Google Scholar

23. Imonigie, J. A., Macartney, D. M. Effects of cyclodextrin inclusion on the kinetics of the outer-sphere oxidation of 4-tert-butylcatechol by transition metal complexes in acidic aqueous media. Inorg. Chem. 1993, 32, 1007; https://doi.org/10.1021/ic00058a042.Suche in Google Scholar

24. Sasikala, K., Senthil kumar, R., Arunachalam, S. Synthesis, characterization and CMC determination of some double-chain surfactant-cobalt(III) complexes Z. Phys. Chem. 2010, 224, 9; https://doi.org/10.1524/zpch.2010.5553.Suche in Google Scholar

25. Sasikala, K., Arunachalam, S. Kinetics of reduction of some surfactant-cobalt(III) complexes by iron(II). J. Dispers. Sci. Technol. 2010, 31, 1618; https://doi.org/10.1080/01932690903297025.Suche in Google Scholar

26. Sasikala, K., Arunachalam, S. Studies on outer sphere electron transfer reactions of some surfactant-cobalt(III) complexes with ferrocyanide anion. Colloid J. 2010, 72, 530–537; https://doi.org/10.1134/s1061933x10040149.Suche in Google Scholar

27. Nagaraj, K., Arunachalam, S. Synthesis, CMC determination, and outer sphere electron transfer reaction of the surfactant complex ion, cis-[Co(en)2(4CNP)(DA)]3+ with [Fe(CN)6]4− in Micelles, β-cyclodextrin, and liposome (dipalmidoylphosphotidylcholine) vesicles. Aust. J. Chem. 2013, 66, 930; https://doi.org/10.1071/ch13099.Suche in Google Scholar

28. Nagaraj, K., Arunachalam, S. Studies on outer-sphere electron transfer reactions of surfactant cobalt(III) complexes with iron(II) in liposome (dipalmitoylphosphotidylcholine) vesicles. Transit. Met. Chem. 2012, 37, 423; https://doi.org/10.1007/s11243-012-9605-4.Suche in Google Scholar

29. Nagaraj, K., Arunachalam, S. Electron-transfer reactions of surfactant cobalt(III) complexes containing polypyridyl ligands with Fe(CN)64− in microheterogeneous environment. Transit. Met. Chem. 2013, 38, 649; https://doi.org/10.1007/s11243-013-9733-5.Suche in Google Scholar

30. Nagaraj, K., Arunachalam, S.Kinetics of reduction of cis-bis(dodecylamine)bis(1,10phenanthroline)cobalt(III) perchlorate and cis-bis(dodecylamine)bis(2,20-bipyridine)cobalt(III) perchlorate by Fe(II) in dipalmitoylphosphatidylcholine vesicles. Monatsh. Chem. 2013, 145, 427; https://doi.org/10.1007/s00706-013-1080-x.Suche in Google Scholar

31. Nagaraj, K., Arunachalam, S. Synthesis, CMC determination and influence of the micelles, β-cyclodextrin, ionic liquids and liposome(dipalmitoylphosphatidylcholine) vesicles on the kinetics of an outer-sphere electron transfer reaction. J. Inclu. Phenom. Macro. Chem. 2013, 79, 3; https://doi.org/10.1007/s10847-013-0365-3.Suche in Google Scholar

32. K. Nagaraj, K. Senthil Murugan, P. Thangamuniyandi, Sakthinathan, S. Electron transfer reaction of ion pairs: 1. Surfactant cobalt(III) complexes by Fe(CN)64− in microheterogeneous media. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2015, 143, 101, https://doi.org/10.1016/j.saa.2015.02.007.Suche in Google Scholar PubMed

33. Chen, S. M., Devasenathipathy, R., Wang, S. F., Kohilarani, K. Glucose at histidine stabilized copper nanospheres decorated multi-walled carbon nanotubes. Int. J. Electrochem. Sci. 2016, 11, 5416; https://doi.org/10.20964/2016.07.62.Suche in Google Scholar

34. Karuppiah, C., Palanisamy, S., Chen, S. M., Veeramani, V., Periakaruppan, P. A novel enzymatic glucose biosensor and sensitive non-enzymatic hydrogen peroxide sensor based on graphene and cobalt oxide nanoparticles composite modified glassy carbon electrode. Sens. Actuators B Chem. 2014, 196, 450; https://doi.org/10.1016/j.snb.2014.02.034.Suche in Google Scholar

35. Pandey, E., Upadhyay, S. K. Effect of micellar aggregates on the kinetics of oxidation of α-aminoacids by chloramine-T in perchloric acid medium. Colloids Surf. A: Physicochem. Eng. Asp. 2005, 269, 7; https://doi.org/10.1016/j.colsurfa.2005.05.029.Suche in Google Scholar

36. Nazmutdinov, R. R., Bronshtein, M. D., Zinkicheva, T. T., Hansen, N. S., Zhang, J., Ulstrup, J. Chiral selectivity in inter-reactant recognition and electron transfer of the oxidation of horse heart cytochrome c by trioxalatocobaltate(III). Inorg. Chem. 2016, 55, 9335; https://doi.org/10.1021/acs.inorgchem.6b01489.Suche in Google Scholar PubMed

37. Shukla, P., Upadhyay, S. K. Kinetics of oxidation of non-ionic surfactants. Ind. J. Chem. 2008, 47, 1037.Suche in Google Scholar

38. Shukla, R., Upadhyay, S. K. Document details – non-ionic micellar inhibition on the rate of oxidation of 1-histidine by alkaline hexacyanoferrate(III) Indian. J. Chem. 2008, 47, 551.Suche in Google Scholar

39. Khan, Z., Kabir-Ud-din, R., Rafiquee, M. Micellar and salt effects on the rate of the condensation between ninhydrin and [Cr(his)(H2O)3]2+. Coll. Surf. A: Physicochem. Eng. Aspects. 2003, 178, 167; https://doi.org/10.1016/s0927-7757(00)00695-6.Suche in Google Scholar

40. Bunton, C. A., Nome, F., Quina, F. H., Romsted, L. R. Ion binding and reactivity at charged aqueous interfaces. Acc. Chem. Res. 1991, 24, 357; https://doi.org/10.1021/ar00012a001.Suche in Google Scholar

41. Frindi, M., Michels, B., Zana, R. Ultrasonic absorption studies of surfactant exchange between micelles and bulk phase in aqueous micellar solutions of nonionic surfactants with a short alkyl chain. 2. C6E3, C6E5, C8E4, and C8E8. J. Phys. Chem. 1992, 96, 6095; https://doi.org/10.1021/j100193a082.Suche in Google Scholar

42. Gratzel, M., Kalyansundaram, K. Kinetics and Catalysis in Microheterogeneous System; Marcel Dekker: New York, 1991.Suche in Google Scholar

43. Fendler, J. H. Membrane Mimetic Chemistry; John Wiley: New York, 1982.Suche in Google Scholar

44. Mittal, K. L. Surfactants in Solution, Vol. 7–10; Plenum: New York, 1989.10.1007/978-1-4615-7990-8Suche in Google Scholar

45. Holmberg, K., Jonsson, B., Kronberg, B., Lindman, B. Surfactants and Polymers in Aqueous Solution; John Wiley and Sons: West Sussex, 2003.10.1002/0470856424Suche in Google Scholar

46. Brown, J. M., Baker, S. K., Colens, A., Darwent, J. R. Enzymatic and Non-enzymatic Catalysis; Dunnil, P., Wiseman, A., Blakebrough, N., Eds. Horwood: Chichester, 1980; p. 111.Suche in Google Scholar

47. Kansız, S., Tolan, A., Azam, M., Dege, N., Alam, M., Sert, Y., Al-Resayes, S. I., İçbudak, H. Acesulfame based Co (II) complex: synthesis, structural investigations, solvatochromism, Hirshfeld surface analysis and molecular docking studies. Polyhedron 2022, 218, 115762; https://doi.org/10.1016/j.poly.2022.115762.Suche in Google Scholar

48. Alisir, S. H., Dege, N., Tapramaz, R. Synthesis, crystal structures and characterizations of three new copper (II) complexes including anti-inflammatory diclofenac. Acta Crystallogr. C: Struct. Chem. 2019, 75, 388–397; https://doi.org/10.1107/s2053229619001827.Suche in Google Scholar

49. Dege, N., Hasan, I., Adıyaman, E. Bis (acesulfamato-K2O4,N) bis (3-methylpyridine) copper (II). Acta Crystallogr. C: Cryst. Struct. Commun. 2006, C62, m401–m403.10.1107/S0108270106027880Suche in Google Scholar PubMed

50. Dege, N., Synthesis, crystal structure, Hirshfeld surface analysis of bis(N,N-diethylenediamine)cadmium(II)] dichloride. J. Struct. Chem. 2023, 64, 563–570; https://doi.org/10.1134/s0022476623040042.Suche in Google Scholar

51. Aydemir, E., Kansiz, S., Gumus, M. K., Yu Gorobets, N., Dege, N. Crystal structure and Hirshfeld surface analysis of 7-ethoxy-5-methyl-2-(pyridin-3-yl)-11, 12-dihydro-5, 11-methano [1, 2, 4] triazolo [1, 5-c] [1, 3, 5] benzoxadiazocine. Acta Crystallogr. E: Crystallogr. Commun. 2018, 74, 367–370; https://doi.org/10.1107/s2056989018002621.Suche in Google Scholar PubMed PubMed Central

52. Ilmi, R., Zhang, D., José, D. L. D., Dege, N., Zhou, L., Wong, W.-Y., Raithby, P. R., Khan, M. S. A tris -diketonate europium (III) complex based OLED fabricated by thermal Evaporation method displaying efficient bright red emission. Org. Electron. 2021, 96, 106216; https://doi.org/10.1016/j.orgel.2021.106216.Suche in Google Scholar

53. Evecen, M., Tanak, H., Tinmaz, F., Dege, N., İlhan, İ. Ö. Experimental (XRD, IR and NMR) and theoretical investigations on 1-(2-nitrobenzoyl) 3,5-bis (4-methoxyphenyl)-4,5-dihydro-1H-pyrazole. J. Mol. Struct. 2016, 1126, 117–126; https://doi.org/10.1016/j.molstruc.2016.01.069.Suche in Google Scholar

54. Demirtaş, G., Dege, N., İçbudak, H., Yurdakul, Ö., Büyükgüngör, O. Experimental and DFT studies on poly [di-3-acesulfamato-o, o: O′; o′: O, o-di- -acesulfamato-o, o; n-di- -aqua-dicalcium (II)] complex. J. Inorg. Organomet. Polym. Mater. 2012, 22, 671–679; https://doi.org/10.1007/s10904-012-9679-7.Suche in Google Scholar

55. Omer Tamer, Mahmoody, H., Feyzioğlu, K. F., Kılınç, O., Avci, D., Orun, O., Dege, N., Atalay, Y. Synthesis of the first mixed ligand Mn (II) and Cd (II) complexes of 4-methoxy-pyridine-2-carboxylic acid, molecular docking studies and investigation of their anti-tumor effects in vitro. Appl. Organomet. Chem. 2020, 34, e5416; https://doi.org/10.1002/aoc.5416.Suche in Google Scholar

56. Kansız, S., Qadir, A. M., Dege, N., Haque Faizi, S. Two new copper (II) carboxylate complexes based on n, n, n’, n’-tetramethylethyleneamine: synthesis, crystal Structures, spectral properties, dft studies and hirshfeld surface analysis. J. Mol. Struct. 2021, 1230, 129916; https://doi.org/10.1016/j.molstruc.2021.129916.Suche in Google Scholar

57. Kanmazalp, S. D., Macit, M., Dege, N. Hirshfeld surface, crystal structure and spectroscopic characterization of (E)-4-(diethylamino)-2-((4-phenoxyphenylimino) methyl) phenol with DFT studies. J. Mol. Struct. 2019, 1179, 181–191; https://doi.org/10.1016/j.molstruc.2018.11.001.Suche in Google Scholar

58. Borsarelli, C. D., Cosa, J. J., Previtali, C. M. Photoinduced charge separation in reverse micelles prepared with benzylhexadecyldimethylammo-niumchloride (BHDC). The electron-transfer reaction between pyrene and N,N′-dimethylaniline. Photochem. Photobiol. 1998, 68, 438; https://doi.org/10.1562/0031-8655(1998)068<0438:pcsirm>2.3.co;2.Suche in Google Scholar

59. Hackett, J. W. I., Turro, C. Bimolecular electron transfer quenching of neutral *Ru(phen)2bps by 4,4‘-diheptyl viologen in water and bound to SDS micelles. J. Phys. Chem., A 1998, 102, 5728; https://doi.org/10.1021/jp9814451.Suche in Google Scholar

60. Miyashita, O., Wolynes, P. G., Onuchic, J. N. Simple energy landscape model for the kinetics of functional transitions in proteins. J. Phys. Chem., B 2005, 109, 1959; https://doi.org/10.1021/jp046736q.Suche in Google Scholar PubMed


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zpch-2023-0338).


Received: 2023-09-02
Accepted: 2023-11-05
Published Online: 2023-11-28
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2023-0338/html
Button zum nach oben scrollen