Volumetric, Viscosity and Conductance Studies of Solute–Solute and Solute–Solvent Interactions of Some Alkali Metal Chlorides in Aqueous Citric Acid at Different Temperatures
Abstract
The present study aims for the structure-making and structure-breaking behavior of some electrolytes in aqueous citric acid solution. The density, viscosity and conductance of some alkali metal chlorides lithium chloride (LiCl), sodium chloride (NaCl) and potassium chloride (KCl) in 0.01 m aqueous citric acid have been measured in the concentration range 0.01–0.12 m at 303.15, 308.15, 313.15 and 318.15 K. From these measurements, molar volume, viscosity parameters and molar conductance have been deliberated. Debye Hückel limiting law is used for the assessment of the contributions of various types of solute–solvent interactions. Jones–Dole viscosity equation is used to calculate viscosity B-coefficient for these salts in aqueous citric acid, which is known to provide information concerning the solvation of ions and their effects on the structure of the solvent in the near environment of the solute particles. The free energies of activation of viscous flow per mole of solvent,
Acknowledgement
M. Kumar thanks CSIR New Delhi for his financial assistance.
References
1. R. Saeed, S. Masood, M. Ashfaq, A. Irfan, J. Chem. Eng. Data 54 (2009) 3125.10.1021/je900195zSuche in Google Scholar
2. D. Kaushal, D. S. Rana, M. S. Chauhan, S. Chauhan, Z. Phys. Chem. 228 (2014) 99.10.1515/zpch-2014-0436Suche in Google Scholar
3. S. Kant, S. Kumar, J. Chem. Eng. Data 58 (2013) 1294.10.1021/je301362jSuche in Google Scholar
4. Y. Akhtar, S. F. Ibrahim, Arabian J. Chem. 4 (2011) 487.10.1016/j.arabjc.2010.07.009Suche in Google Scholar
5. S. Kant, M. Kumar, J. Chem. Biol. Phys. Sci. 3 (2013) 2459.Suche in Google Scholar
6. S. Chauhan, Seema, D. S. Rana, Rajni, M. S. Chauhan, A. Umar, Adv. Sci. Eng. Med. 4 (2012) 81.10.1166/asem.2012.1122Suche in Google Scholar
7. D. S. Gill, D. S. Rana, S. P. Jauhar, J. Chem. Eng. Data. 55 (2010) 2066.10.1021/je900915pSuche in Google Scholar
8. Z. Hai-Lang, H. Shi-Jun, J. Chem. Eng. Data 41 (1996) 516.10.1021/je9501402Suche in Google Scholar
9. K. Zhuo, Y. Chen, W. Wang, J. Wang, J. Chem. Eng. Data 53 (2008) 2022.10.1021/je700732uSuche in Google Scholar
10. V. R. Karanth, D. K. Bhat, Thermochim. Acta 572 (2013) 23.10.1016/j.tca.2013.08.002Suche in Google Scholar
11. S. Thirumaran, K. J. Sabu, J. Appl. Sci. 11 (2011) 3258.10.3923/jas.2011.3258.3266Suche in Google Scholar
12. S. K. Lomesh, D. Kumar, J. Mol. Liq. 241 (2017) 764.10.1016/j.molliq.2017.05.004Suche in Google Scholar
13. G. Ayranci, M. Sahin, E. Ayranci, J. Chem. Thermodyn. 39 (2007) 1620.10.1016/j.jct.2007.04.009Suche in Google Scholar
14. D. S. Rana, D. S. Gill, M. S. Chauhan, R. Gupta, Z. Phys. Chem. 225 (2011) 421.10.1524/zpch.2011.5533Suche in Google Scholar
15. D. S. Rana, D. S. Gill and R. Gupta, Z. Phys. Chem. 222 (2008) 1039.10.1524/zpch.2008.5357Suche in Google Scholar
16. B. Hribar, N. T. Southall, V. Vlachy, K. A. Dill, J. Am. Chem. Soc. 124 (2002) 12302.10.1021/ja026014hSuche in Google Scholar PubMed PubMed Central
17. E. Djamali, J. Cobble, J. Phys. Chem. B 113 (2009) 5200.10.1021/jp900723dSuche in Google Scholar PubMed
18. R. W. Gurney, Ionic Process in Solution, Chap. 10, McGrawHill, New York (1953).Suche in Google Scholar
19. Y. Marcus, Chem. Rev. 109 (2009) 1346.10.1021/cr8003828Suche in Google Scholar PubMed
20. L. Grande, E. Paillard, J. Hassoun, J. B. Park, Y. J. Lee, Y.K. Sun, S. Passerini, B. Scrosati, Adv. Mater. 27 (2015) 784.10.1002/adma.201403064Suche in Google Scholar PubMed
21. Y. Lu, M. Tikekar, R. Mohanty, K. Hendrickson, L. Ma, L. A. Archer, Adv. Energy Mater. 5 (2015) 1402073.10.1002/aenm.201402073Suche in Google Scholar
22. Q. Chen, K. Geng, K. Sieradzki, J. Electrochem. Soc. 162 (2015) A2004.10.1149/2.0261510jesSuche in Google Scholar
23. J. P. Castillo, H. Rui, D. Basilio, A. Das, B. Roux, R. Latorre, F. Bezanilla, M. Holmgren, Nat. Commun. 6 (2015) 7622.10.1038/ncomms8622Suche in Google Scholar PubMed PubMed Central
24. G. K. Ward, F. J. Millero, J. Sol. Chem. 3 (1974) 417.10.1007/BF00651533Suche in Google Scholar
25. S. Chauhan, M. S. Chauhan, D. Kaushal, V. K. Syal, J. Jyoti, J. Sol. Chem. 39 (2010) 622.10.1007/s10953-010-9534-9Suche in Google Scholar
26. D. S. Gill, A. Kumari, R. Gupta, D. S. Rana, J. K. Puri, S. P. Jauhar, J. Mol. Liq. 133 (2007) 7.10.1016/j.molliq.2006.05.009Suche in Google Scholar
27. S. Chauhan, K. Sharma, D. S. Rana, G. Kumar, A. Umar, J. Sol. Chem. 42 (2013) 634.10.1007/s10953-013-9981-1Suche in Google Scholar
28. Z. Yan, X. Wen, Y. Kang, W. Chu, J. Chem. Thermodynamics 101 (2016) 300.10.1016/j.jct.2016.06.018Suche in Google Scholar
29. D. Kumar, S. K. Sharma, Z. Phys. Chem. 232 (2018) 393.10.1515/zpch-2017-0977Suche in Google Scholar
30. F. J. Millero, Structure, Thermodynamics and Transport processes in water and aqueous solutions, Chap. 15, R. A. Horne, Ed. Wiley Inter science, New York (1971).Suche in Google Scholar
31. F. J. Millero, W. D. Hansen, J. Phys. Chem. 72 (1968) 1758.10.1021/j100851a064Suche in Google Scholar
32. F. J. Millero, Chem. Rev. 71 (1971) 147.10.1021/cr60270a001Suche in Google Scholar
33. L. G. Hepler, Can. J. Chem. 47 (1969) 4613.10.1139/v69-762Suche in Google Scholar
34. M. F. Hossain, T. K. Biswas, M. N. Islam, M. E. Huque, Monatsh Chem. 141 (2010) 1297.10.1007/s00706-010-0402-5Suche in Google Scholar PubMed
35. A. Pal, N. Chauhan, J. Chem. Eng. Data 56 (2011) 1687.10.1021/je100857sSuche in Google Scholar
36. D. Kumar, S. K. Lomesh, V. Nathan, J. Mol. Liq. 247 (2017) 75.10.1016/j.molliq.2017.08.057Suche in Google Scholar
37. G. Jones, M. Dole, J. Am. Chem. Soc. 51 (1929) 2950.10.1021/ja01385a012Suche in Google Scholar
38. A. M. Seuvre, M. Mathlouthi, Food Chem. 122 (2010) 455.10.1016/j.foodchem.2009.04.101Suche in Google Scholar
39. H. Falkenhagen, E. L. Vernon, Z. Phys. Chem. 33 (1932) 140.Suche in Google Scholar
40. Z. N. Yan, J. J. Wang, W. B. Liu, J. S. Lu, Thermochim. Acta 334 (1999) 17.10.1016/S0040-6031(99)00107-0Suche in Google Scholar
41. M. N. Roy, V. K. Dakua, B. Sinha, Int. J. Thermophys. 28 (2007) 1275.10.1007/s10765-007-0220-0Suche in Google Scholar
42. H. Li, X. S. Chen, F. Guo, L. Zhao, J. Zhu, Y. D. Zhang, J. Chem. Eng. Data 55 (2010) 1659.10.1021/je9007124Suche in Google Scholar
43. D. S. Rana, D. S. Gill, S. P. Jauhar, Z. Phys. Chem. 225 (2011) 69.10.1524/zpch.2011.5527Suche in Google Scholar
44. S. Glasstone, K. J. Laidler, H. Eyring, The Theory of Rate Processes, Mc Graw Hill, New York (1941), P. 477.Suche in Google Scholar
45. A. Ali, S. Khan, S. Hyder, Md. Tariq, J. Chem. Thermodyn. 39 (2007) 613.10.1016/j.jct.2006.08.010Suche in Google Scholar
46. A. Ali, P. Bidhuri, N. A. Malik, S. Uzair, Arab. J. Chem. (2014) (available online to 2014.08.27, http://dx.doi.org/10.1016/j.arabjc.2014.08.027).Suche in Google Scholar
47. D. A. Maclness, The Principles of Electrochemistry, Dova Publications, Inc., New York (1967).Suche in Google Scholar
48. R. L. Kay, D. F. Evans, J. Phys. Chem. 70 (1966) 2325.10.1021/j100879a040Suche in Google Scholar
49. P. Bruno, M. D. Monica, J. Phys. Chem. 76 (1972) 1049.10.1021/j100651a018Suche in Google Scholar
50. R. L. Blokhra, P. C. Verma, Electrochem Acta 22 (1977) 485.10.1016/0013-4686(77)85104-9Suche in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Study of Intermolecular Interactions of CTAB with Amino Acids at Different Temperatures: A Multi Technique Approach
- The Differential Spectroscopic Investigation of Partitioning of Reactive Dyes in Micellar Media of Cationic Surfactant, Cetyl Trimethylammonium Bromide (CTAB)
- Extraction of Heavy Metals from Aqueous Medium by Husk Biomass: Adsorption Isotherm, Kinetic and Thermodynamic study
- Adsorption and Computational Studies for Evaluating the Behavior of Silicon Based Compounds as Novel Corrosion Inhibitors of Carbon Steel Surfaces in Acidic Media
- Volumetric, Viscosity and Conductance Studies of Solute–Solute and Solute–Solvent Interactions of Some Alkali Metal Chlorides in Aqueous Citric Acid at Different Temperatures
- Solubility and Thermodynamics of 6-Phenyl-4,5-dihydropyridazin-3(2H)-one in Various (PEG 400+Water) Mixtures
- Micellar Supported Ultrafiltration of Malachite Green: Experimental Verification of Theoretical Approach
- Experimental and Theoretical Study on the Interaction of P-Aminophenol Hydrochloride with H2O
Artikel in diesem Heft
- Frontmatter
- Study of Intermolecular Interactions of CTAB with Amino Acids at Different Temperatures: A Multi Technique Approach
- The Differential Spectroscopic Investigation of Partitioning of Reactive Dyes in Micellar Media of Cationic Surfactant, Cetyl Trimethylammonium Bromide (CTAB)
- Extraction of Heavy Metals from Aqueous Medium by Husk Biomass: Adsorption Isotherm, Kinetic and Thermodynamic study
- Adsorption and Computational Studies for Evaluating the Behavior of Silicon Based Compounds as Novel Corrosion Inhibitors of Carbon Steel Surfaces in Acidic Media
- Volumetric, Viscosity and Conductance Studies of Solute–Solute and Solute–Solvent Interactions of Some Alkali Metal Chlorides in Aqueous Citric Acid at Different Temperatures
- Solubility and Thermodynamics of 6-Phenyl-4,5-dihydropyridazin-3(2H)-one in Various (PEG 400+Water) Mixtures
- Micellar Supported Ultrafiltration of Malachite Green: Experimental Verification of Theoretical Approach
- Experimental and Theoretical Study on the Interaction of P-Aminophenol Hydrochloride with H2O