Startseite Volumetric, Viscosity and Conductance Studies of Solute–Solute and Solute–Solvent Interactions of Some Alkali Metal Chlorides in Aqueous Citric Acid at Different Temperatures
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Volumetric, Viscosity and Conductance Studies of Solute–Solute and Solute–Solvent Interactions of Some Alkali Metal Chlorides in Aqueous Citric Acid at Different Temperatures

  • Manish Kumar EMAIL logo , Shashi Kant und Deepika Kaushal
Veröffentlicht/Copyright: 28. Mai 2018

Abstract

The present study aims for the structure-making and structure-breaking behavior of some electrolytes in aqueous citric acid solution. The density, viscosity and conductance of some alkali metal chlorides lithium chloride (LiCl), sodium chloride (NaCl) and potassium chloride (KCl) in 0.01 m aqueous citric acid have been measured in the concentration range 0.01–0.12 m at 303.15, 308.15, 313.15 and 318.15 K. From these measurements, molar volume, viscosity parameters and molar conductance have been deliberated. Debye Hückel limiting law is used for the assessment of the contributions of various types of solute–solvent interactions. Jones–Dole viscosity equation is used to calculate viscosity B-coefficient for these salts in aqueous citric acid, which is known to provide information concerning the solvation of ions and their effects on the structure of the solvent in the near environment of the solute particles. The free energies of activation of viscous flow per mole of solvent, Δμ10 and solute, Δμ20, have also been evaluated by using viscosity data. Using molar volume, the transfer volume Фvotr has also been computed. The structure making/ breaking behavior of LiCl, NaCl and KCl is inferred from the sign of second derivative of partial molar volume with respect to temperature at constant pressure (d2φvo/dT2)p, Temperature coefficient of B. dB/dT and temperature coefficient of Walden product i.e. d(Λmoηo)/dT values. It has been found from these studies that LiCl, NaCl and KCl behave as structure-breaker in 0.01 m aqueous citric acid solution. The results have been qualitatively used to explain the molecular interaction and structural changes between the components of these mixtures.

Acknowledgement

M. Kumar thanks CSIR New Delhi for his financial assistance.

References

1. R. Saeed, S. Masood, M. Ashfaq, A. Irfan, J. Chem. Eng. Data 54 (2009) 3125.10.1021/je900195zSuche in Google Scholar

2. D. Kaushal, D. S. Rana, M. S. Chauhan, S. Chauhan, Z. Phys. Chem. 228 (2014) 99.10.1515/zpch-2014-0436Suche in Google Scholar

3. S. Kant, S. Kumar, J. Chem. Eng. Data 58 (2013) 1294.10.1021/je301362jSuche in Google Scholar

4. Y. Akhtar, S. F. Ibrahim, Arabian J. Chem. 4 (2011) 487.10.1016/j.arabjc.2010.07.009Suche in Google Scholar

5. S. Kant, M. Kumar, J. Chem. Biol. Phys. Sci. 3 (2013) 2459.Suche in Google Scholar

6. S. Chauhan, Seema, D. S. Rana, Rajni, M. S. Chauhan, A. Umar, Adv. Sci. Eng. Med. 4 (2012) 81.10.1166/asem.2012.1122Suche in Google Scholar

7. D. S. Gill, D. S. Rana, S. P. Jauhar, J. Chem. Eng. Data. 55 (2010) 2066.10.1021/je900915pSuche in Google Scholar

8. Z. Hai-Lang, H. Shi-Jun, J. Chem. Eng. Data 41 (1996) 516.10.1021/je9501402Suche in Google Scholar

9. K. Zhuo, Y. Chen, W. Wang, J. Wang, J. Chem. Eng. Data 53 (2008) 2022.10.1021/je700732uSuche in Google Scholar

10. V. R. Karanth, D. K. Bhat, Thermochim. Acta 572 (2013) 23.10.1016/j.tca.2013.08.002Suche in Google Scholar

11. S. Thirumaran, K. J. Sabu, J. Appl. Sci. 11 (2011) 3258.10.3923/jas.2011.3258.3266Suche in Google Scholar

12. S. K. Lomesh, D. Kumar, J. Mol. Liq. 241 (2017) 764.10.1016/j.molliq.2017.05.004Suche in Google Scholar

13. G. Ayranci, M. Sahin, E. Ayranci, J. Chem. Thermodyn. 39 (2007) 1620.10.1016/j.jct.2007.04.009Suche in Google Scholar

14. D. S. Rana, D. S. Gill, M. S. Chauhan, R. Gupta, Z. Phys. Chem. 225 (2011) 421.10.1524/zpch.2011.5533Suche in Google Scholar

15. D. S. Rana, D. S. Gill and R. Gupta, Z. Phys. Chem. 222 (2008) 1039.10.1524/zpch.2008.5357Suche in Google Scholar

16. B. Hribar, N. T. Southall, V. Vlachy, K. A. Dill, J. Am. Chem. Soc. 124 (2002) 12302.10.1021/ja026014hSuche in Google Scholar PubMed PubMed Central

17. E. Djamali, J. Cobble, J. Phys. Chem. B 113 (2009) 5200.10.1021/jp900723dSuche in Google Scholar PubMed

18. R. W. Gurney, Ionic Process in Solution, Chap. 10, McGrawHill, New York (1953).Suche in Google Scholar

19. Y. Marcus, Chem. Rev. 109 (2009) 1346.10.1021/cr8003828Suche in Google Scholar PubMed

20. L. Grande, E. Paillard, J. Hassoun, J. B. Park, Y. J. Lee, Y.K. Sun, S. Passerini, B. Scrosati, Adv. Mater. 27 (2015) 784.10.1002/adma.201403064Suche in Google Scholar PubMed

21. Y. Lu, M. Tikekar, R. Mohanty, K. Hendrickson, L. Ma, L. A. Archer, Adv. Energy Mater. 5 (2015) 1402073.10.1002/aenm.201402073Suche in Google Scholar

22. Q. Chen, K. Geng, K. Sieradzki, J. Electrochem. Soc. 162 (2015) A2004.10.1149/2.0261510jesSuche in Google Scholar

23. J. P. Castillo, H. Rui, D. Basilio, A. Das, B. Roux, R. Latorre, F. Bezanilla, M. Holmgren, Nat. Commun. 6 (2015) 7622.10.1038/ncomms8622Suche in Google Scholar PubMed PubMed Central

24. G. K. Ward, F. J. Millero, J. Sol. Chem. 3 (1974) 417.10.1007/BF00651533Suche in Google Scholar

25. S. Chauhan, M. S. Chauhan, D. Kaushal, V. K. Syal, J. Jyoti, J. Sol. Chem. 39 (2010) 622.10.1007/s10953-010-9534-9Suche in Google Scholar

26. D. S. Gill, A. Kumari, R. Gupta, D. S. Rana, J. K. Puri, S. P. Jauhar, J. Mol. Liq. 133 (2007) 7.10.1016/j.molliq.2006.05.009Suche in Google Scholar

27. S. Chauhan, K. Sharma, D. S. Rana, G. Kumar, A. Umar, J. Sol. Chem. 42 (2013) 634.10.1007/s10953-013-9981-1Suche in Google Scholar

28. Z. Yan, X. Wen, Y. Kang, W. Chu, J. Chem. Thermodynamics 101 (2016) 300.10.1016/j.jct.2016.06.018Suche in Google Scholar

29. D. Kumar, S. K. Sharma, Z. Phys. Chem. 232 (2018) 393.10.1515/zpch-2017-0977Suche in Google Scholar

30. F. J. Millero, Structure, Thermodynamics and Transport processes in water and aqueous solutions, Chap. 15, R. A. Horne, Ed. Wiley Inter science, New York (1971).Suche in Google Scholar

31. F. J. Millero, W. D. Hansen, J. Phys. Chem. 72 (1968) 1758.10.1021/j100851a064Suche in Google Scholar

32. F. J. Millero, Chem. Rev. 71 (1971) 147.10.1021/cr60270a001Suche in Google Scholar

33. L. G. Hepler, Can. J. Chem. 47 (1969) 4613.10.1139/v69-762Suche in Google Scholar

34. M. F. Hossain, T. K. Biswas, M. N. Islam, M. E. Huque, Monatsh Chem. 141 (2010) 1297.10.1007/s00706-010-0402-5Suche in Google Scholar PubMed

35. A. Pal, N. Chauhan, J. Chem. Eng. Data 56 (2011) 1687.10.1021/je100857sSuche in Google Scholar

36. D. Kumar, S. K. Lomesh, V. Nathan, J. Mol. Liq. 247 (2017) 75.10.1016/j.molliq.2017.08.057Suche in Google Scholar

37. G. Jones, M. Dole, J. Am. Chem. Soc. 51 (1929) 2950.10.1021/ja01385a012Suche in Google Scholar

38. A. M. Seuvre, M. Mathlouthi, Food Chem. 122 (2010) 455.10.1016/j.foodchem.2009.04.101Suche in Google Scholar

39. H. Falkenhagen, E. L. Vernon, Z. Phys. Chem. 33 (1932) 140.Suche in Google Scholar

40. Z. N. Yan, J. J. Wang, W. B. Liu, J. S. Lu, Thermochim. Acta 334 (1999) 17.10.1016/S0040-6031(99)00107-0Suche in Google Scholar

41. M. N. Roy, V. K. Dakua, B. Sinha, Int. J. Thermophys. 28 (2007) 1275.10.1007/s10765-007-0220-0Suche in Google Scholar

42. H. Li, X. S. Chen, F. Guo, L. Zhao, J. Zhu, Y. D. Zhang, J. Chem. Eng. Data 55 (2010) 1659.10.1021/je9007124Suche in Google Scholar

43. D. S. Rana, D. S. Gill, S. P. Jauhar, Z. Phys. Chem. 225 (2011) 69.10.1524/zpch.2011.5527Suche in Google Scholar

44. S. Glasstone, K. J. Laidler, H. Eyring, The Theory of Rate Processes, Mc Graw Hill, New York (1941), P. 477.Suche in Google Scholar

45. A. Ali, S. Khan, S. Hyder, Md. Tariq, J. Chem. Thermodyn. 39 (2007) 613.10.1016/j.jct.2006.08.010Suche in Google Scholar

46. A. Ali, P. Bidhuri, N. A. Malik, S. Uzair, Arab. J. Chem. (2014) (available online to 2014.08.27, http://dx.doi.org/10.1016/j.arabjc.2014.08.027).Suche in Google Scholar

47. D. A. Maclness, The Principles of Electrochemistry, Dova Publications, Inc., New York (1967).Suche in Google Scholar

48. R. L. Kay, D. F. Evans, J. Phys. Chem. 70 (1966) 2325.10.1021/j100879a040Suche in Google Scholar

49. P. Bruno, M. D. Monica, J. Phys. Chem. 76 (1972) 1049.10.1021/j100651a018Suche in Google Scholar

50. R. L. Blokhra, P. C. Verma, Electrochem Acta 22 (1977) 485.10.1016/0013-4686(77)85104-9Suche in Google Scholar

Received: 2018-02-09
Accepted: 2018-04-29
Published Online: 2018-05-28
Published in Print: 2019-02-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 25.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2018-1151/html
Button zum nach oben scrollen