Startseite Micellar Supported Ultrafiltration of Malachite Green: Experimental Verification of Theoretical Approach
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Micellar Supported Ultrafiltration of Malachite Green: Experimental Verification of Theoretical Approach

  • Mohib Ullah , Luqman Ali Shah , Murtaza Sayed , Muhammad Siddiq EMAIL logo und Noor Ul Amin
Veröffentlicht/Copyright: 28. April 2018

Abstract

This study pertains to theoretical aspect of membrane and surfactant supported ultrafiltration technique followed by experimental evaluation of rejection percentage (R%) and permeate flux (J). The organic dye malachite green (MG) was removed from water samples with help of micellar solution of sodium dodecyl sulfate (SDS) surfactant on account of effective surfactant-dye interaction. The MG removal from water was result of electrostatic force of attraction between Stern layer of SDS micelles and cationic MG in addition to hydrophobic-hydrophobic interaction. The regenerated cellulose membrane was used to retain enhanced MG-SDS micellar complex from polluted water in stirred ultrafiltration cell. R% of MG increases from 79.3%, 77%, 76% to 97.5%, 95%, 90% for 0.01, 0.1 and 0.2 mM concentrations, respectively. “J” decreases throughout the experiment on account of membrane plugging or concentration polarization. Hydrodynamic radius (Rh) of SDS surfactant was also determined at its post micellar concentrations by dynamic laser light scattering (DLLS) that shows high rejection percentage with increased Rh values.

Acknowledgements

The authors acknowledge Pakistan Science Foundation (PSF) for financial support.

References

1. T. Ito, Y. Adachi, Y. Yamanashi, Y. Shimada, Water Res. 100 (2016) 458.10.1016/j.watres.2016.05.050Suche in Google Scholar PubMed

2. T. Watermann, D. Sebastiani, Z. Phys. Chem. 232 (2018) 989.10.1515/zpch-2017-1011Suche in Google Scholar

3. I. Šafařı́k, M. Šafařı́ková, Water Res. 36 (2002) 196.10.1016/S0043-1354(01)00243-3Suche in Google Scholar PubMed

4. J. Fan, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, Chemosphere 191 (2018) 315.10.1016/j.chemosphere.2017.10.042Suche in Google Scholar PubMed

5. W. Sun, C. Zhang, J. Chen, B. Zhang, H. Zhang, Y. Zhang, L. Chen, J. Hazard. Mater. 324 (2017) 739.10.1016/j.jhazmat.2016.11.052Suche in Google Scholar PubMed

6. D. Ghernaout, A. I. Al-Ghonamy, A. Boucherit, B. Ghernaout, M. W. Naceur, N. A. Messaoudene, M. Aichouni, A. A. Mahjoubi, N. A. Elboughdiri, Am. J. Environ. Prot. 4 (2015) 1.10.11648/j.ajeps.s.2015040501.11Suche in Google Scholar

7. R. Dewil, D. Mantzavinos, I. Poulios, M. A. Rodrigo, J. Environ. Manage. 195 (2017) 93.10.1016/j.jenvman.2017.04.010Suche in Google Scholar PubMed

8. S. Fudala-Ksiazek, M. Sobaszek, A. Luczkiewicz, A. Pieczynska, A. Ofiarska, A. Fiszka-Borzyszkowska, M. Sawczak, M. Ficek, R. Bogdanowicz, E. M. Siedlecka, Chem. Eng. J. 334 (2018) 1074.10.1016/j.cej.2017.09.196Suche in Google Scholar

9. M. Sayed, P. Fu, L. A. Shah, H. M. Khan, J. Nisar, M. Ismail, P. Zhang, J. Phys. Chem. A 120 (2016) 118.10.1021/acs.jpca.5b10502Suche in Google Scholar PubMed

10. M. Sayed, L. A. Shah, J. A. Khan, N. S. Shah, J. Nisar, H. M. Khan, P. Zhang, A. R. Khan, J. Phys. Chem. A. 120 (2016) 9916.10.1021/acs.jpca.6b09719Suche in Google Scholar PubMed

11. S. Yaqoob, F. Ullah, S. Mehmood, T. Mahmood, M. Ullah, A. Khattak, M. A. Zeb, J. Water Reuse Desal. (2017). DOI: 10.2166/wrd.2017.163.10.2166/wrd.2017.163Suche in Google Scholar

12. M. Sayed, J. A. Khan, L. A. Shah, N. S. Shah, H. M. Khan, F. Rehman, A. R. Khan, A. M. Khan, Environ. Sci. Pollut. Res. Int. 23 (2016) 13155.10.1007/s11356-016-6475-xSuche in Google Scholar PubMed

13. A. Salima, B. Benaouda, B. Noureddine, L. Duclaux, Water Res. 47 (2013) 3375.10.1016/j.watres.2013.03.038Suche in Google Scholar PubMed

14. D. Mehta, S. Mazumdar, S. Singh, Journal of Water Process Engineering 7 (2015) 244.10.1016/j.jwpe.2015.07.001Suche in Google Scholar

15. Y. Cui, X. Y. Liu, T. S. Chung, M. Weber, C. Staudt, C. Maletzko, Water Res. 91 (2016) 104.10.1016/j.watres.2016.01.001Suche in Google Scholar PubMed

16. L. A. Shah, M. Sayed, M. Fayaz, I. Bibi, M. Nawaz, M. Siddiq, Nanotechnology for Environmental Engineering 2 (2017) 14.10.1007/s41204-017-0026-7Suche in Google Scholar

17. L. A. Shah, A. Haleem, M. Sayed, M. Siddiq, J. Environ. Chem. Eng. 4 (2016) 3492.10.1016/j.jece.2016.07.029Suche in Google Scholar

18. J. D. Roach, D. Tush, Water Res. 42 (2008) 1204.10.1016/j.watres.2007.09.003Suche in Google Scholar PubMed

19. J. D. Roach, J. H. Zapien, Water Res. 43 (2009) 4751.10.1016/j.watres.2009.08.007Suche in Google Scholar PubMed

20. M. A. Khosa, S. S. Shah, J. Dispersion Sci. Technol. 32 (2011) 1002.10.1080/01932691.2010.497428Suche in Google Scholar

21. J. Chen, J. Mao, X. Mo, J. Hang, M. Yang, Colloids Surf. A Physicochem. Eng. Asp. 345 (2009) 231.10.1016/j.colsurfa.2009.05.015Suche in Google Scholar

22. N. Pourreza, S. Elhami, Anal. Chim. Acta 596 (2007) 62.10.1016/j.aca.2007.05.042Suche in Google Scholar PubMed

23. R. Rajagopalan, P. C. Hiemenz, Principles of colloid and surface chemistry. 3e édition, Marcel Dekker, New-York, ISBN 0, 8247 (1998), p. 8.Suche in Google Scholar

24. M. A. Khosa, S. S. Shah, X. Feng, Sep. Sci. Technol. 48 (2013) 1315.10.1080/01496395.2012.740124Suche in Google Scholar

25. M. A. Khosa, S. S. Shah, M. F. Nazar, J. Disper. Sci. Technol. 32 (2011) 260.10.1080/01932691003659171Suche in Google Scholar

Received: 2017-11-05
Accepted: 2018-03-27
Published Online: 2018-04-28
Published in Print: 2019-02-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 25.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2017-1068/html
Button zum nach oben scrollen