Extraction of Heavy Metals from Aqueous Medium by Husk Biomass: Adsorption Isotherm, Kinetic and Thermodynamic study
-
Khalida Naseem
, Rahila Huma , Aiman Shahbaz , Jawaria Jamal , Muhammad Zia Ur Rehman , Ahsan Sharif , Ejaz Ahmed , Robina Begum , Ahmad Irfan , Abdullah G. Al-Sehemi and Zahoor H. Farooqi
Abstract
This study describes the adsorption of Cu (II), Co (II) and Ni (II) ions from wastewater on Vigna radiata husk biomass. The ability of adsorbent to capture the metal ions has been found to be in the order of Ni (II)>Co (II) and Cu (II) depending upon the size and nature of metal ions to be adsorbed. It has been observed that percentage removal of Cu (II), Co (II) and Ni (II) ions increases with increase of adsorbent dosage, contact time and pH of the medium but up to a certain extent. Maximum adsorption capacity (qmax) for Cu (II), Co (II) and Ni (II) ions has been found to be 11.05, 15.04 and 19.88 mg/g, respectively, under optimum conditions of adsorbent dosage, contact time and pH of the medium. Langmuir model best fits the adsorption process with R2 value approaches to unity for all metal ions as compared to other models because adsorption sites are seemed to be equivalent and only monolayer adsorption may occur as a result of binding of metal ion with a functional moiety of adsorbent. Pseudo second order kinetic model best interprets the adsorption process of Cu (II), Co (II) and Ni (II) ions. Thermodynamic parameters such as negative value of Gibbs energy (∆G°) gives information about feasibility and spontaneity of the process. Adsorption process was found to be endothermic for Cu (II) ions while exothermic for Co (II) and Ni (II) ions as signified by the value of enthalpy change (∆H°). Husk biomass was recycled three times for removal of Ni (II) from aqueous medium to investigate its recoverability and reusability. Moreover V. radiata husk biomass has a potential to extract Cu (II) and Ni (II) from electroplating wastewater to overcome the industrial waste water pollution.
Acknowledgments
This work was supported by University of the Punjab, Lahore, Pakistan under research Grant No:/999/EST.I for the fiscal year of 2017–2018. A. Irfan and A. G. Al-Sehemi would like to acknowledge the support of the King Khalid University for this research through a grant RCAMS/KKU/005-18 under the (Research Center for Advanced Materials Science) at King Khalid University, Kingdom of Saudi Arabia.
References
1. M. Athar, U. Farooq, M. Aslam, M. Salman, Appl. Water Sci. 3 (2013) 665.10.1007/s13201-013-0115-0Search in Google Scholar
2. S. Ben-Ali, I. Jaouali, S. Souissi-Najar, A. Ouederni, J. Cleaner Prod. 142 (2017) 3809.10.1016/j.jclepro.2016.10.081Search in Google Scholar
3. F. Cuomo, F. Venditti, G. Cinelli, A. Ceglie, F. Lopez, Z. Phys. Chem. 230 (2016) 1269.10.1515/zpch-2015-0725Search in Google Scholar
4. S. S. A. El-Rehim, H. H. Hassan, M. A. M. Deyab, A. A. El Moneim, Z. Phys. Chem. 230 (2016) 67.10.1515/zpch-2015-0614Search in Google Scholar
5. M. Jain, V. Garg, K. Kadirvelu, M. Sillanpää, Int. J. Environ. Sci. Technol. 13 (2016) 493.10.1007/s13762-015-0855-5Search in Google Scholar
6. A. Yargıç, R. Y. Şahin, N. Özbay, E. Önal, J. Cleaner Prod. 88 (2015) 152.10.1016/j.jclepro.2014.05.087Search in Google Scholar
7. S. A. El-Rehim, M. Deyab, H. Hassan, A. M. Shaltot, Z. Phys. Chem. 231 (2017) 1573.10.1515/zpch-2016-0905Search in Google Scholar
8. H. Nady, M. El-Rabiei, M. Migahed, M. Fathy, Z. Phys. Chem. 231 (2017) 1179.10.1515/zpch-2016-0886Search in Google Scholar
9. A. Demirbas, J. Hazard. Mater. 157 (2008) 220.10.1016/j.jhazmat.2008.01.024Search in Google Scholar PubMed
10. L. Mino, C. Negri, A. Zecchina, G. Spoto, Z. Phys. Chem. 230 (2016) 1441.10.1515/zpch-2015-0733Search in Google Scholar
11. K. Naseem, Z. H. Farooqi, R. Begum, A. Irfan, J. Cleaner Prod. 187 (2018) 296.10.1016/j.jclepro.2018.03.209Search in Google Scholar
12. M. Mohsen-Nia, P. Montazeri, H. Modarress, Desalination 217 (2007) 276.10.1016/j.desal.2006.01.043Search in Google Scholar
13. A. Smara, R. Delimi, E. Chainet, J. Sandeaux, Sep. Sci. Technol. 57 (2007) 103.10.1016/j.seppur.2007.03.012Search in Google Scholar
14. G. Sharma, D. Pathania, M. Naushad, Ionics 21 (2015) 1045.10.1007/s11581-014-1269-ySearch in Google Scholar
15. M. I. Din, K. Ijaz, K. Naseem, Chem. Ind. Chem. Eng. Q 23 (2017) 399.10.2298/CICEQ151217054DSearch in Google Scholar
16. K. Naseem, Z. H. Farooqi, M. Z. U. Rehman, M. A. U. Rehman, M. Ghufran, Rev. Chem. Eng. doi.org/10.1515/revce-2017–0042.Search in Google Scholar
17. S. Marković, A. Stanković, Z. Lopičić, S. Lazarević, M. Stojanović, D. Uskoković, J. Environ. Chem. Eng. 3 (2015) 716.10.1016/j.jece.2015.04.002Search in Google Scholar
18. B. Nasernejad, T. E. Zadeh, B. B. Pour, M. E. Bygi, A. Zamani, Process Biochem. 40 (2005) 1319.10.1016/j.procbio.2004.06.010Search in Google Scholar
19. L. Hao, P. Wang, S. Valiyaveettil, Sci. Rep. 7 (2017) 42881.10.1038/srep42881Search in Google Scholar PubMed PubMed Central
20. P. Indhumathi, S. Sathiyaraj, J. P. Koelmel, S. U. Shoba, C. Jayabalakrishnan, M. Saravanabhavan, Z. Phys. Chem. 232 (2018) 527.10.1515/zpch-2016-0900Search in Google Scholar
21. A. Shanmugalingam, A. Murugesan, Z. Phys. Chem. 232 (2018) 489.10.1515/zpch-2017-0998Search in Google Scholar
22. Z. Aksu, İ. A. İşoğlu, Process Biochem. 40 (2005) 3031.10.1016/j.procbio.2005.02.004Search in Google Scholar
23. V. Dang, H. Doan, T. Dang-Vu, A. Lohi, Bioresour. Technol. 100 (2009) 211.10.1016/j.biortech.2008.05.031Search in Google Scholar PubMed
24. S. Choudhary, V. Goyal, S. Singh, Clean Technol. Environ. Policy 17 (2015) 1039.10.1007/s10098-014-0860-2Search in Google Scholar
25. A. Ahmadpour, M. Tahmasbi, T. R. Bastami, J. A. Besharati, J. Hazard. Mater. 166 (2009) 925.10.1016/j.jhazmat.2008.11.103Search in Google Scholar PubMed
26. M. Ajmal, R. A. K. Rao, R. Ahmad, J. Ahmad, J. Hazard. Mater. 79 (2000) 117.10.1016/S0304-3894(00)00234-XSearch in Google Scholar PubMed
27. B. Zhu, T. Fan, D. Zhang, J. Hazard. Mater. 153 (2008) 300.10.1016/j.jhazmat.2007.08.050Search in Google Scholar PubMed
28. A. Bhatnagar, A. Minocha, M. Sillanpää, Biochem. Eng. J. 48 (2010) 181.10.1016/j.bej.2009.10.005Search in Google Scholar
29. M. Salman, M. Athar, U. Farooq, S. Nazir, H. Nazir, Desalin. Water Treat. 51 (2013) 4390.10.1080/19443994.2012.749186Search in Google Scholar
30. A. Saeed, M. W. Akhter, M. Iqbal, Sep. Purif. Tech. 45 (2005) 25.10.1016/j.seppur.2005.02.004Search in Google Scholar
31. B. Kannamba, K. L. Reddy, B. AppaRao, J. Hazard. Mater. 175 (2010) 939.10.1016/j.jhazmat.2009.10.098Search in Google Scholar PubMed
32. B. Yu, Y. Zhang, A. Shukla, S. S. Shukla, K. L. Dorris, J. Hazard. Mater. 80 (2000) 33.10.1016/S0304-3894(00)00278-8Search in Google Scholar PubMed
33. H. Parab, S. Joshi, N. Shenoy, A. Lali, U. Sarma, M. Sudersanan, Process. Biochem. 41 (2006) 609.10.1016/j.procbio.2005.08.006Search in Google Scholar
34. E. Malkoc, Y. Nuhoglu, J. Hazard. Mater. 127 (2005) 120.10.1016/j.jhazmat.2005.06.030Search in Google Scholar PubMed
35. H. Hasar, J. Hazard. Mater. 97 (2003) 49.10.1016/S0304-3894(02)00237-6Search in Google Scholar PubMed
36. F. A. Abu Al-Rub, M. Kandah, N. Al-Dabaybeh, Sep. Sci. Technol. 38 (2003) 483.10.1081/SS-120016586Search in Google Scholar
37. M. Iqbal, A. Saeed, R. G. Edyvean, Chem. Eng. J. 225 (2013) 192.10.1016/j.cej.2013.03.079Search in Google Scholar
38. Y. Li, L. Xia, R. Huang, C. Xia, S. Song, RSC Adv. 7 (2017) 34600.10.1039/C7RA06749FSearch in Google Scholar
39. R. A. K. Rao, A. Khatoon, J. Cleaner Prod. 165 (2017) 1280.10.1016/j.jclepro.2017.07.160Search in Google Scholar
40. W. E. Oliveira, A. S. Franca, L. S. Oliveira, S. D. Rocha, J. Hazard. Mater. 152 (2008) 1073.10.1016/j.jhazmat.2007.07.085Search in Google Scholar PubMed
41. Z. Huang, Q. Wu, S. Liu, T. Liu, B. Zhang, Carbohydr. Polym. 97 (2013) 496.10.1016/j.carbpol.2013.04.047Search in Google Scholar PubMed
42. P. Liu, L. Jiang, L. Zhu, J. Guo, A. Wang, J. Ind. Eng. Chem. 23 (2015) 188.10.1016/j.jiec.2014.08.014Search in Google Scholar
43. H. Pahlavanzadeh, A. Keshtkar, J. Safdari, Z. Abadi, J. Hazard. Mater. 175 (2010) 304.10.1016/j.jhazmat.2009.10.004Search in Google Scholar PubMed
44. I. Suhasini, G. Sriram, S. Asolekar, G. Sureshkumar, Process Biochem. 34 (1999) 239.10.1016/S0032-9592(98)00090-9Search in Google Scholar
45. L. V. A. Gurgel, L. F. Gil, Water Res. 43 (2009) 4479.10.1016/j.watres.2009.07.017Search in Google Scholar PubMed
46. K. Ramesh, A. Rajappa, V. Nandhakumar, Z. Phys. Chem. 231 (2017) 1057.10.1515/zpch-2016-0868Search in Google Scholar
47. M. Ajmal, M. Siddiq, N. Aktas, N. Sahiner, RSC Adv. 5 (2015) 43873.10.1039/C5RA05785JSearch in Google Scholar
48. N. Feng, X. Guo, S. Liang, Y. Zhu, J. Liu, J. Hazard. Mater. 185 (2011) 49.10.1016/j.jhazmat.2010.08.114Search in Google Scholar PubMed
49. D. Bulgariu, L. Bulgariu, Bioresour. Technol. 103 (2012) 489.10.1016/j.biortech.2011.10.016Search in Google Scholar PubMed
50. M. A. Javed, H. N. Bhatti, M. A. Hanif, R. Nadeem, Sep. Sci. Technol. 42 (2007) 3641.10.1080/01496390701710794Search in Google Scholar
51. M. N. Zafar, R. Nadeem, M. A. Hanif, J. Hazard. Mater. 143 (2007) 478.10.1016/j.jhazmat.2006.09.055Search in Google Scholar PubMed
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/zpch-2018-1182).
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Study of Intermolecular Interactions of CTAB with Amino Acids at Different Temperatures: A Multi Technique Approach
- The Differential Spectroscopic Investigation of Partitioning of Reactive Dyes in Micellar Media of Cationic Surfactant, Cetyl Trimethylammonium Bromide (CTAB)
- Extraction of Heavy Metals from Aqueous Medium by Husk Biomass: Adsorption Isotherm, Kinetic and Thermodynamic study
- Adsorption and Computational Studies for Evaluating the Behavior of Silicon Based Compounds as Novel Corrosion Inhibitors of Carbon Steel Surfaces in Acidic Media
- Volumetric, Viscosity and Conductance Studies of Solute–Solute and Solute–Solvent Interactions of Some Alkali Metal Chlorides in Aqueous Citric Acid at Different Temperatures
- Solubility and Thermodynamics of 6-Phenyl-4,5-dihydropyridazin-3(2H)-one in Various (PEG 400+Water) Mixtures
- Micellar Supported Ultrafiltration of Malachite Green: Experimental Verification of Theoretical Approach
- Experimental and Theoretical Study on the Interaction of P-Aminophenol Hydrochloride with H2O
Articles in the same Issue
- Frontmatter
- Study of Intermolecular Interactions of CTAB with Amino Acids at Different Temperatures: A Multi Technique Approach
- The Differential Spectroscopic Investigation of Partitioning of Reactive Dyes in Micellar Media of Cationic Surfactant, Cetyl Trimethylammonium Bromide (CTAB)
- Extraction of Heavy Metals from Aqueous Medium by Husk Biomass: Adsorption Isotherm, Kinetic and Thermodynamic study
- Adsorption and Computational Studies for Evaluating the Behavior of Silicon Based Compounds as Novel Corrosion Inhibitors of Carbon Steel Surfaces in Acidic Media
- Volumetric, Viscosity and Conductance Studies of Solute–Solute and Solute–Solvent Interactions of Some Alkali Metal Chlorides in Aqueous Citric Acid at Different Temperatures
- Solubility and Thermodynamics of 6-Phenyl-4,5-dihydropyridazin-3(2H)-one in Various (PEG 400+Water) Mixtures
- Micellar Supported Ultrafiltration of Malachite Green: Experimental Verification of Theoretical Approach
- Experimental and Theoretical Study on the Interaction of P-Aminophenol Hydrochloride with H2O