Abstract
The magnetocaloric effect (MCE) of the ferromagnetic compound GdAg2Mg [TC=98.3(5) K] was investigated along with its electrical resistivity and the specific heat capacity. The magnetic entropy changes (–ΔSM) as well as the changes in adiabatic temperature (ΔTad) have been calculated from these data. Furthermore, the magnetic susceptibility of the pseudo-quaternary Heusler phases GdAgAuMg, TbAgAuMg and DyAgAuMg [i.e. RE(Ag0.5Au0.5)2Mg] were measured and compared to the data for the pure silver and gold compounds REAg2Mg and REAu2Mg. The substitution of the transition metal at the crystallographic Wyckoff site 8c influences the magnetic ground state of the trivalent rare earth metals and therefore drastically alters the Curie temperatures. The structure of GdAgAuMg was refined from single crystal X-ray diffraction data, revealing a small deviation from the equiatomic composition leading to the refined formula GdAg0.92(6)Au1.08(6)Mg [space group Fm3̅m, Z=4, a=695.03(10) pm, wR2=0.0883, 55 F2 values, six parameters]. The intermetallic compounds were synthesised in sealed niobium ampoules under high temperature conditions. They have reddish to brassy colour.
Acknowledgements
We thank Dipl.-Ing. Jutta Kösters for the single-crystal intensity measurement.
References
[1] F. Heusler, W. Starck, E. Haupt, Verh. Dtsch. Phys. Ges. 1903, 5, 219.Suche in Google Scholar
[2] O. Heusler, Ann. Phys. 1934, 19, 155.10.1002/andp.19344110205Suche in Google Scholar
[3] M. H. F. Sluiter, Phase Trans.2007, 80, 299.10.1080/01411590701228562Suche in Google Scholar
[4] U. Müller, Inorganic Structural Chemistry, 2nd ed., Wiley, Chichester, 2007.10.1002/9780470057278Suche in Google Scholar
[5] R. Pöttgen, Z. Anorg. Allg. Chem. 2014, 640, 869.10.1002/zaac.201400023Suche in Google Scholar
[6] R. Pöttgen, D. Johrendt, Intermetallics, De Gruyter, Berlin, 2014.10.1524/9783486856187Suche in Google Scholar
[7] P. Villars, K. Cenzual, Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2017/18), ASM International®, Materials Park, Ohio (USA) 2017.Suche in Google Scholar
[8] P. J. Webster, Contemp. Phys. 1969, 10, 559.10.1080/00107516908204800Suche in Google Scholar
[9] Y. Kurtulus, M. Gilleßen, R. Dronskowski, J. Comput. Chem. 2005, 27, 90.10.1002/jcc.20308Suche in Google Scholar
[10] M. Gilleßen, R. Dronskowski, J. Comput. Chem. 2009, 30, 1290.10.1002/jcc.21152Suche in Google Scholar PubMed
[11] T. Graf, C. Felser, S. S. P. Parkin, Progr. Solid State Chem. 2011, 39, 1.10.1016/j.progsolidstchem.2011.02.001Suche in Google Scholar
[12] Z. Bai, L. Shen, G. Han, Y. P. Feng, Spin, 2012, 2, 1230006.10.1142/S201032471230006XSuche in Google Scholar
[13] L. Wollmann, A. K. Nayak, S. S. P. Parkin, C. Felser, Ann. Rev. Mater. Res. 2017, 47, 247.10.1146/annurev-matsci-070616-123928Suche in Google Scholar
[14] A. Szytuła, J. Leciejewicz, Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics, CRC Press, Boca Raton, 1994.Suche in Google Scholar
[15] P. Wang, Z. M. Stadnik, J. Phys.: Condens. Matter2007, 19, 346235.10.1088/0953-8984/19/34/346235Suche in Google Scholar
[16] U. Ch. Rodewald, B. Chevalier, R. Pöttgen, J. Solid State Chem. 2007, 180, 1720.10.1016/j.jssc.2007.03.007Suche in Google Scholar
[17] F. Tappe, R. Pöttgen, Rev. Inorg. Chem. 2011, 31, 5.10.1515/revic.2011.007Suche in Google Scholar
[18] G. Berger, A. Weiss, J. Less-Common Met. 1988, 142, 109.10.1016/0022-5088(88)90168-3Suche in Google Scholar
[19] S. K. Dhar, R. Settai, Y. Ōnuki, A. Galatanu, Y. Haga, P. Manfrinetti, M. Pani, J. Magn. Magn. Mater. 2007, 308, 143.10.1016/j.jmmm.2006.05.013Suche in Google Scholar
[20] M. Johnscher, S. Stein, O. Niehaus, C. Benndorf, L. Heletta, M. Kersting, C. Höting, H. Eckert, R. Pöttgen, Solid State Sci. 2016, 52, 57.10.1016/j.solidstatesciences.2015.12.004Suche in Google Scholar
[21] C. Benndorf, S. Stein, L. Heletta, M. Kersting, H. Eckert, R. Pöttgen, Dalton Trans. 2017, 46, 250.10.1039/C6DT04097GSuche in Google Scholar
[22] R. Pöttgen, T. Gulden, A. Simon, GIT Labor-Fachz. 1999, 43, 133.Suche in Google Scholar
[23] D. Kußmann, R.-D. Hoffmann, R. Pöttgen, Z. Anorg. Allg. Chem. 1998, 624, 1727.10.1002/(SICI)1521-3749(1998110)624:11<1727::AID-ZAAC1727>3.0.CO;2-0Suche in Google Scholar
[24] L. J. van der Pauw, Philips Res. Rep. 1958, 13, 1.Suche in Google Scholar
[25] K. Yvon, W. Jeitschko, E. Parthé, J. Appl. Crystallogr. 1997, 10, 73.10.1107/S0021889877012898Suche in Google Scholar
[26] V. Petříček, M. Dušek, L. Palatinus, Z. Kristallogr. 2014, 229, 345.10.1515/zkri-2014-1737Suche in Google Scholar
[27] C. Janiak, H.-J. Meyer, D. Gudat, P. Kurz, Moderne Anorganische Chemie, 5. Auflage, De Gruyter, Berlin, 2018.10.1515/9783110441635Suche in Google Scholar
[28] J. Drews, U. Eberz, H.-U. Schuster, J. Less-Common Met. 1986, 116, 271.10.1016/0022-5088(86)90235-3Suche in Google Scholar
[29] J. Emsley, The Elements, 3rd ed., Oxford Press, Oxford, 1998.Suche in Google Scholar
[30] Th. Fickenscher, R. Pöttgen, J. Solid State Chem. 2001, 161, 67.10.1006/jssc.2001.9268Suche in Google Scholar
[31] R. Pöttgen, R.-D. Hoffmann, J. Renger, U. Ch. Rodewald, M. H. Möller, Z. Anorg. Allg. Chem. 2000, 626, 2257.10.1002/1521-3749(200011)626:11<2257::AID-ZAAC2257>3.0.CO;2-#Suche in Google Scholar
[32] A. Arrott, Phys. Rev. 1957, 108, 1394.10.1103/PhysRev.108.1394Suche in Google Scholar
[33] A. Hirohata, T. Huminiuc, J. Sinclair, H. Wu, M. Samiepour, G. Vallejo-Fernandez, K. O´Grady, J. Balluf, M. Meinert, G. Reiss, E. Simon, S. Khmelevskyi, L. Szunyogh, R. Díaz, U. Nowak, T. Tsuchiya, T. Sugiyama, T. Kubota, K. Takanashi, N. Inami, K. Ono, J. Phys. D: Appl. Phys. 2017, 50, 443001.10.1088/1361-6463/aa88f4Suche in Google Scholar
[34] A. M. Nikitin, Y. Pan, X. Mao, R. Jehee, G. K. Araizi, Y. K. Huang, C. Paulsen, S. C. Wu, B. H. Yan, A. de Visser, J. Phys.: Condens. Matter2015, 27, 275701.10.1088/0953-8984/27/27/275701Suche in Google Scholar
[35] Q. Mao, J. Yang, H. Wang, R. Khan, J. Du, Y. Zhou, B. Xu, Q. Chen, M. Fang, Sci. Rep. 2016, 6, 34235.10.1038/srep34235Suche in Google Scholar
[36] S. K. Banerjee, Phys. Lett. 1964, 12, 16.10.1016/0031-9163(64)91158-8Suche in Google Scholar
[37] L. Li, O. Niehaus, M. Kersting, R. Pöttgen, Appl. Phys. Lett. 2014, 104, 092416.10.1063/1.4867882Suche in Google Scholar
[38] L. Li, Chin. Phys. B2016, 25, 037502.10.1088/1674-1056/25/3/037502Suche in Google Scholar
[39] V. K. Pecharsky, K. A. Gscheidner Jr., J. Magn. Magn. Mater. 1999, 200, 44.10.1016/S0304-8853(99)00397-2Suche in Google Scholar
[40] L. Li, O. Niehaus, B. Gerke, R. Pöttgen, IEEE Trans. Magn. 2014, 50, 2503604.10.1109/TMAG.2014.2323339Suche in Google Scholar
[41] H. Lueken, Magnetochemie, Teubner, Leipzig, 1999.10.1007/978-3-322-80118-0Suche in Google Scholar
[42] K. Łątka, Z. Tomkowicz, R. Kmieć, A. W. Pacyna, R. Mishra, T. Fickenscher, R.-D. Hoffmann, R. Pöttgen, H. Piotrowski, J. Solid State Chem. 2002, 168, 331.10.1006/jssc.2002.9718Suche in Google Scholar
[43] K. Łątka, R. Kmieć, A. W. Pacyna, T. Fickenscher, R.-D. Hoffmann, R. Pöttgen, Solid State Sci. 2004, 6, 301.10.1016/j.solidstatesciences.2004.01.006Suche in Google Scholar
[44] R. A. Layfield, M. Musugesu, Lanthanides and Actinides in Molecular Magnetism, Wiley-VCH, Weinheim, 2015.10.1002/9783527673476Suche in Google Scholar
[45] M. Jansen, Solid State Sci. 2005, 7, 1464.10.1016/j.solidstatesciences.2005.06.015Suche in Google Scholar
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this Issue
- Analysis of two [2]catenanes based on electron densities from invariom refinement and results from DFT calculations
- Orthoamide und Iminiumsalze, XCVa. Umsetzungen von Orthoamiden von Alkin-Carbonsäuren mit Acetophenonen und Acetophenon-Phenylhydrazonen
- Metal-free, air-promoted, radical-mediated arylation of benzoquinone with phenylhydrazines
- Three-component condensation reaction of various aldehydes, dimedone and malononitrile catalyzed by boric acid in water in comparison with multifunctional ionic liquids as green catalytic systems
- Synthesis, characterization, and electrochemical study of a mononuclear Cu(II) complex with a 4-acyl pyrazolone ligand
- Synthesis of LaCoO3 powder by a combined mechanical/thermal process
- Preparation and molecular structures of N′-(2-heteroarylmethylidene)-3-(3-pyridyl)acrylohydrazides
- A new modification of [Ag4Br4(PPh3)4]: synthesis, structure and properties
- Magnetic and magnetocaloric properties of the coloured Heusler phases GdAg2Mg and REAgAuMg (RE=Gd, Tb, Dy)
Artikel in diesem Heft
- Frontmatter
- In this Issue
- Analysis of two [2]catenanes based on electron densities from invariom refinement and results from DFT calculations
- Orthoamide und Iminiumsalze, XCVa. Umsetzungen von Orthoamiden von Alkin-Carbonsäuren mit Acetophenonen und Acetophenon-Phenylhydrazonen
- Metal-free, air-promoted, radical-mediated arylation of benzoquinone with phenylhydrazines
- Three-component condensation reaction of various aldehydes, dimedone and malononitrile catalyzed by boric acid in water in comparison with multifunctional ionic liquids as green catalytic systems
- Synthesis, characterization, and electrochemical study of a mononuclear Cu(II) complex with a 4-acyl pyrazolone ligand
- Synthesis of LaCoO3 powder by a combined mechanical/thermal process
- Preparation and molecular structures of N′-(2-heteroarylmethylidene)-3-(3-pyridyl)acrylohydrazides
- A new modification of [Ag4Br4(PPh3)4]: synthesis, structure and properties
- Magnetic and magnetocaloric properties of the coloured Heusler phases GdAg2Mg and REAgAuMg (RE=Gd, Tb, Dy)