Home Synthesis of LaCoO3 powder by a combined mechanical/thermal process
Article
Licensed
Unlicensed Requires Authentication

Synthesis of LaCoO3 powder by a combined mechanical/thermal process

  • Vittorio Berbenni EMAIL logo , Chiara Milanese , Giovanna Bruni and Alessandro Girella
Published/Copyright: September 11, 2018
Become an author with De Gruyter Brill

Abstract

Lanthanum cobaltite, LaCoO3, finds applications as an oxidation and reduction catalyst in gas-sensing materials and in electrode materials for high-temperature fuel cells. The compound has been synthesized through several routes aimed at obtaining LaCoO3 at lower temperatures. We propose a synthetic procedure based on the combined use of mechanical and thermal energy on mixtures of Co(II) oxalate dehydrate and La acetate sesquihydrate. We studied the reactions taking place by increasing the temperature. The study has been performed either on mixtures prepared by a simple physical mixing of the reactants or on the same mixtures after having been subjected to mechanical activation by high-energy milling. The products formed in the mixtures by annealing at different temperatures have been characterized by means of different experimental techniques (thermogravimetric analysis, XRPD, IR, scanning electron microscopy).

References

[1] Z. Zhang, X. Li, J. Ma, J. Indian Chem. Soc. 1998, 75, 300.Search in Google Scholar

[2] E. L. Brosha, R. Mukundan, D. R. Brown, F. H. Garzon, J. H. Visser, M. Zanini, Z. Zhou, M. Logothesis, Sens. Actuators2000, B69, 171.10.1016/S0925-4005(00)00543-8Search in Google Scholar

[3] K. Huang, H. Y. Lee, J. B. Goodenough, J. Electrochem. Soc. 1998, 145, 3220.10.1149/1.1838789Search in Google Scholar

[4] F. Li, X. Yu, L. Chen, H. Pan, X. Xin, J. Am. Ceram. Soc. 2002, 85, 2177.10.1111/j.1151-2916.2002.tb00431.xSearch in Google Scholar

[5] A. D. Jadhav, A. B. Gaikwad, V. Samuel, V. Ravi, Mater. Lett. 2007, 61, 2030.10.1016/j.matlet.2006.08.009Search in Google Scholar

[6] M. Ghasdi, H. Alamdari, Sens. Actuators2010, B148, 478.10.1016/j.snb.2010.05.056Search in Google Scholar

[7] T. Ito, Q. Zhang, F. Saito, Powder Techn. 2004, 143–144, 170.10.1016/j.powtec.2004.04.010Search in Google Scholar

[8] W. Kaituo, W. Xuehang, W. Wenwei, L. Yongni, L. Sen, Ceram. Int. 2014, 40, 5997.10.1016/j.ceramint.2013.11.048Search in Google Scholar

[9] S. Farhadi, S. Sepahvand, J. Alloys Compd. 2010, 489, 586.10.1016/j.jallcom.2009.09.117Search in Google Scholar

[10] V. Berbenni, C. Milanese, G. Bruni, A. Girella, A. Marini, Z. Naturforsch. 2012, 67b, 667.10.5560/znb.2012-0125Search in Google Scholar

[11] V. Berbenni, C. Milanese, G. Bruni, A. Girella, A. Marini, Z. Naturforsch. 2014, 69b, 313.10.5560/znb.2014-3306Search in Google Scholar

[12] V. Berbenni, C. Milanese, G. Bruni, A. Marini, Z. Naturforsch. 2007, 62b, 663.10.1515/znb-2007-0506Search in Google Scholar

[13] V. Berbenni, C. Milanese, G. Bruni, A. Marini, Thermochim. Acta2008, 469, 86.10.1016/j.tca.2007.11.025Search in Google Scholar

[14] M. Sivakumar, A. Gedanken, W. Zhong, Y. H. Jiang, Y. W. Du, I. Brukental, D. Bhattacharya, Y. Yeshurun, I. Novik, J. Mater. Chem. 2004, 14, 764.10.1039/b310110jSearch in Google Scholar

Received: 2018-06-14
Accepted: 2018-08-14
Published Online: 2018-09-11
Published in Print: 2018-10-25

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 13.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2018-0130/html
Scroll to top button