Abstract
The magnetocaloric effect (MCE) of the ferromagnetic compound GdAg2Mg [TC=98.3(5) K] was investigated along with its electrical resistivity and the specific heat capacity. The magnetic entropy changes (–ΔSM) as well as the changes in adiabatic temperature (ΔTad) have been calculated from these data. Furthermore, the magnetic susceptibility of the pseudo-quaternary Heusler phases GdAgAuMg, TbAgAuMg and DyAgAuMg [i.e. RE(Ag0.5Au0.5)2Mg] were measured and compared to the data for the pure silver and gold compounds REAg2Mg and REAu2Mg. The substitution of the transition metal at the crystallographic Wyckoff site 8c influences the magnetic ground state of the trivalent rare earth metals and therefore drastically alters the Curie temperatures. The structure of GdAgAuMg was refined from single crystal X-ray diffraction data, revealing a small deviation from the equiatomic composition leading to the refined formula GdAg0.92(6)Au1.08(6)Mg [space group Fm3̅m, Z=4, a=695.03(10) pm, wR2=0.0883, 55 F2 values, six parameters]. The intermetallic compounds were synthesised in sealed niobium ampoules under high temperature conditions. They have reddish to brassy colour.
Acknowledgements
We thank Dipl.-Ing. Jutta Kösters for the single-crystal intensity measurement.
References
[1] F. Heusler, W. Starck, E. Haupt, Verh. Dtsch. Phys. Ges. 1903, 5, 219.Search in Google Scholar
[2] O. Heusler, Ann. Phys. 1934, 19, 155.10.1002/andp.19344110205Search in Google Scholar
[3] M. H. F. Sluiter, Phase Trans.2007, 80, 299.10.1080/01411590701228562Search in Google Scholar
[4] U. Müller, Inorganic Structural Chemistry, 2nd ed., Wiley, Chichester, 2007.10.1002/9780470057278Search in Google Scholar
[5] R. Pöttgen, Z. Anorg. Allg. Chem. 2014, 640, 869.10.1002/zaac.201400023Search in Google Scholar
[6] R. Pöttgen, D. Johrendt, Intermetallics, De Gruyter, Berlin, 2014.10.1524/9783486856187Search in Google Scholar
[7] P. Villars, K. Cenzual, Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2017/18), ASM International®, Materials Park, Ohio (USA) 2017.Search in Google Scholar
[8] P. J. Webster, Contemp. Phys. 1969, 10, 559.10.1080/00107516908204800Search in Google Scholar
[9] Y. Kurtulus, M. Gilleßen, R. Dronskowski, J. Comput. Chem. 2005, 27, 90.10.1002/jcc.20308Search in Google Scholar
[10] M. Gilleßen, R. Dronskowski, J. Comput. Chem. 2009, 30, 1290.10.1002/jcc.21152Search in Google Scholar PubMed
[11] T. Graf, C. Felser, S. S. P. Parkin, Progr. Solid State Chem. 2011, 39, 1.10.1016/j.progsolidstchem.2011.02.001Search in Google Scholar
[12] Z. Bai, L. Shen, G. Han, Y. P. Feng, Spin, 2012, 2, 1230006.10.1142/S201032471230006XSearch in Google Scholar
[13] L. Wollmann, A. K. Nayak, S. S. P. Parkin, C. Felser, Ann. Rev. Mater. Res. 2017, 47, 247.10.1146/annurev-matsci-070616-123928Search in Google Scholar
[14] A. Szytuła, J. Leciejewicz, Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics, CRC Press, Boca Raton, 1994.Search in Google Scholar
[15] P. Wang, Z. M. Stadnik, J. Phys.: Condens. Matter2007, 19, 346235.10.1088/0953-8984/19/34/346235Search in Google Scholar
[16] U. Ch. Rodewald, B. Chevalier, R. Pöttgen, J. Solid State Chem. 2007, 180, 1720.10.1016/j.jssc.2007.03.007Search in Google Scholar
[17] F. Tappe, R. Pöttgen, Rev. Inorg. Chem. 2011, 31, 5.10.1515/revic.2011.007Search in Google Scholar
[18] G. Berger, A. Weiss, J. Less-Common Met. 1988, 142, 109.10.1016/0022-5088(88)90168-3Search in Google Scholar
[19] S. K. Dhar, R. Settai, Y. Ōnuki, A. Galatanu, Y. Haga, P. Manfrinetti, M. Pani, J. Magn. Magn. Mater. 2007, 308, 143.10.1016/j.jmmm.2006.05.013Search in Google Scholar
[20] M. Johnscher, S. Stein, O. Niehaus, C. Benndorf, L. Heletta, M. Kersting, C. Höting, H. Eckert, R. Pöttgen, Solid State Sci. 2016, 52, 57.10.1016/j.solidstatesciences.2015.12.004Search in Google Scholar
[21] C. Benndorf, S. Stein, L. Heletta, M. Kersting, H. Eckert, R. Pöttgen, Dalton Trans. 2017, 46, 250.10.1039/C6DT04097GSearch in Google Scholar
[22] R. Pöttgen, T. Gulden, A. Simon, GIT Labor-Fachz. 1999, 43, 133.Search in Google Scholar
[23] D. Kußmann, R.-D. Hoffmann, R. Pöttgen, Z. Anorg. Allg. Chem. 1998, 624, 1727.10.1002/(SICI)1521-3749(1998110)624:11<1727::AID-ZAAC1727>3.0.CO;2-0Search in Google Scholar
[24] L. J. van der Pauw, Philips Res. Rep. 1958, 13, 1.Search in Google Scholar
[25] K. Yvon, W. Jeitschko, E. Parthé, J. Appl. Crystallogr. 1997, 10, 73.10.1107/S0021889877012898Search in Google Scholar
[26] V. Petříček, M. Dušek, L. Palatinus, Z. Kristallogr. 2014, 229, 345.10.1515/zkri-2014-1737Search in Google Scholar
[27] C. Janiak, H.-J. Meyer, D. Gudat, P. Kurz, Moderne Anorganische Chemie, 5. Auflage, De Gruyter, Berlin, 2018.10.1515/9783110441635Search in Google Scholar
[28] J. Drews, U. Eberz, H.-U. Schuster, J. Less-Common Met. 1986, 116, 271.10.1016/0022-5088(86)90235-3Search in Google Scholar
[29] J. Emsley, The Elements, 3rd ed., Oxford Press, Oxford, 1998.Search in Google Scholar
[30] Th. Fickenscher, R. Pöttgen, J. Solid State Chem. 2001, 161, 67.10.1006/jssc.2001.9268Search in Google Scholar
[31] R. Pöttgen, R.-D. Hoffmann, J. Renger, U. Ch. Rodewald, M. H. Möller, Z. Anorg. Allg. Chem. 2000, 626, 2257.10.1002/1521-3749(200011)626:11<2257::AID-ZAAC2257>3.0.CO;2-#Search in Google Scholar
[32] A. Arrott, Phys. Rev. 1957, 108, 1394.10.1103/PhysRev.108.1394Search in Google Scholar
[33] A. Hirohata, T. Huminiuc, J. Sinclair, H. Wu, M. Samiepour, G. Vallejo-Fernandez, K. O´Grady, J. Balluf, M. Meinert, G. Reiss, E. Simon, S. Khmelevskyi, L. Szunyogh, R. Díaz, U. Nowak, T. Tsuchiya, T. Sugiyama, T. Kubota, K. Takanashi, N. Inami, K. Ono, J. Phys. D: Appl. Phys. 2017, 50, 443001.10.1088/1361-6463/aa88f4Search in Google Scholar
[34] A. M. Nikitin, Y. Pan, X. Mao, R. Jehee, G. K. Araizi, Y. K. Huang, C. Paulsen, S. C. Wu, B. H. Yan, A. de Visser, J. Phys.: Condens. Matter2015, 27, 275701.10.1088/0953-8984/27/27/275701Search in Google Scholar
[35] Q. Mao, J. Yang, H. Wang, R. Khan, J. Du, Y. Zhou, B. Xu, Q. Chen, M. Fang, Sci. Rep. 2016, 6, 34235.10.1038/srep34235Search in Google Scholar
[36] S. K. Banerjee, Phys. Lett. 1964, 12, 16.10.1016/0031-9163(64)91158-8Search in Google Scholar
[37] L. Li, O. Niehaus, M. Kersting, R. Pöttgen, Appl. Phys. Lett. 2014, 104, 092416.10.1063/1.4867882Search in Google Scholar
[38] L. Li, Chin. Phys. B2016, 25, 037502.10.1088/1674-1056/25/3/037502Search in Google Scholar
[39] V. K. Pecharsky, K. A. Gscheidner Jr., J. Magn. Magn. Mater. 1999, 200, 44.10.1016/S0304-8853(99)00397-2Search in Google Scholar
[40] L. Li, O. Niehaus, B. Gerke, R. Pöttgen, IEEE Trans. Magn. 2014, 50, 2503604.10.1109/TMAG.2014.2323339Search in Google Scholar
[41] H. Lueken, Magnetochemie, Teubner, Leipzig, 1999.10.1007/978-3-322-80118-0Search in Google Scholar
[42] K. Łątka, Z. Tomkowicz, R. Kmieć, A. W. Pacyna, R. Mishra, T. Fickenscher, R.-D. Hoffmann, R. Pöttgen, H. Piotrowski, J. Solid State Chem. 2002, 168, 331.10.1006/jssc.2002.9718Search in Google Scholar
[43] K. Łątka, R. Kmieć, A. W. Pacyna, T. Fickenscher, R.-D. Hoffmann, R. Pöttgen, Solid State Sci. 2004, 6, 301.10.1016/j.solidstatesciences.2004.01.006Search in Google Scholar
[44] R. A. Layfield, M. Musugesu, Lanthanides and Actinides in Molecular Magnetism, Wiley-VCH, Weinheim, 2015.10.1002/9783527673476Search in Google Scholar
[45] M. Jansen, Solid State Sci. 2005, 7, 1464.10.1016/j.solidstatesciences.2005.06.015Search in Google Scholar
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this Issue
- Analysis of two [2]catenanes based on electron densities from invariom refinement and results from DFT calculations
- Orthoamide und Iminiumsalze, XCVa. Umsetzungen von Orthoamiden von Alkin-Carbonsäuren mit Acetophenonen und Acetophenon-Phenylhydrazonen
- Metal-free, air-promoted, radical-mediated arylation of benzoquinone with phenylhydrazines
- Three-component condensation reaction of various aldehydes, dimedone and malononitrile catalyzed by boric acid in water in comparison with multifunctional ionic liquids as green catalytic systems
- Synthesis, characterization, and electrochemical study of a mononuclear Cu(II) complex with a 4-acyl pyrazolone ligand
- Synthesis of LaCoO3 powder by a combined mechanical/thermal process
- Preparation and molecular structures of N′-(2-heteroarylmethylidene)-3-(3-pyridyl)acrylohydrazides
- A new modification of [Ag4Br4(PPh3)4]: synthesis, structure and properties
- Magnetic and magnetocaloric properties of the coloured Heusler phases GdAg2Mg and REAgAuMg (RE=Gd, Tb, Dy)
Articles in the same Issue
- Frontmatter
- In this Issue
- Analysis of two [2]catenanes based on electron densities from invariom refinement and results from DFT calculations
- Orthoamide und Iminiumsalze, XCVa. Umsetzungen von Orthoamiden von Alkin-Carbonsäuren mit Acetophenonen und Acetophenon-Phenylhydrazonen
- Metal-free, air-promoted, radical-mediated arylation of benzoquinone with phenylhydrazines
- Three-component condensation reaction of various aldehydes, dimedone and malononitrile catalyzed by boric acid in water in comparison with multifunctional ionic liquids as green catalytic systems
- Synthesis, characterization, and electrochemical study of a mononuclear Cu(II) complex with a 4-acyl pyrazolone ligand
- Synthesis of LaCoO3 powder by a combined mechanical/thermal process
- Preparation and molecular structures of N′-(2-heteroarylmethylidene)-3-(3-pyridyl)acrylohydrazides
- A new modification of [Ag4Br4(PPh3)4]: synthesis, structure and properties
- Magnetic and magnetocaloric properties of the coloured Heusler phases GdAg2Mg and REAgAuMg (RE=Gd, Tb, Dy)