Abstract
Catenanes are of considerable interest as potential building blocks for molecular machines. The simplest [2]catenanes, Hopf links, consist of two macrocycles that are mechanically interlocked. This unusual architecture cannot be opened without breaking at least one covalent bond. Based on these structural characteristics, unusual properties on Hirshfeld or electrostatic potential surfaces could be expected. For a comparison of their structural and electronic properties, the electron densities (EDs) of two [2]catenanes, coded H22 and H4L7 in the original papers, were examined after application of the invariom formalism, relying on X-ray diffraction data collected earlier. The obtained electron density distributions were subjected to an analysis using the QTAIM formalism to yield bond and atomic properties. Moreover, molecular Hirshfeld surfaces and electrostatic potentials (ESP) were calculated. There are different types of intra- and intermolecular interactions in these two [2]catenanes. In addition to classical N–H···N and C–H···O hydrogen bonds, various types of π···π interactions in H22 and in H4L7 exist. Most of them are verified by local ED concentrations visible on the corresponding Hirshfeld surfaces, except for the parallel π···π interactions in H22, which are either too weak or too diffuse to generate an ED signal on the Hirshfeld surface between the contributing aromatic rings. The electrostatic potentials (ESPs) were calculated and displayed on molecular surfaces. The interaction in the cavity of one macrocycle with the penetrated fragment of the second one was examined and it was found that corresponding to the above-mentioned contacts attractive and repulsive interactions exist. Additionally the ED was examined using results of density functional calculations, including non-covalent interaction index (NCI) and electron localizability indicator (ELI-D) surface analysis, complementing experimental findings.
Acknowledgement
The authors are grateful to the Deutsche Forschungsgemeinschaft (DFG) for financial support by project DI 921/6-1.
References
[1] G. Gil-Ramirez, D. A. Leigh, A. J. Stephens, Angew. Chem. Int. Ed.2015, 54, 6110.10.1002/anie.201411619Search in Google Scholar
[2] Press Release of the Nobel Committee, October 2016, http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2016/press.html. See also D. A. Leigh, Angew. Chem. Int. Ed.2016, 55, 14506.10.1002/anie.201609841Search in Google Scholar
[3] F. H. Allen, Acta Crystallogr.2002, B58, 380.10.1107/S0108768102003890Search in Google Scholar
[4] B. Dittrich, T. Koritsanszky, P. Luger, Angew. Chem. Int. Ed.2004, 43, 2718.10.1002/anie.200353596Search in Google Scholar
[5] B. Dittrich, C. B. Hübschle, K. Pröpper, F. Dietrich, T. Stolper, J. J. Holstein, Acta Crystallogr.2013, B69, 91.10.1107/S2052519213002285Search in Google Scholar
[6] D. A. Leigh, P. J. Lusby, A. M. Z. Slawin, D. B. Walker, Angew. Chem. Int. Ed.2005, 44, 4557.10.1002/anie.200500004Search in Google Scholar
[7] D. A. Leigh, P. J. Lusby, R. T. McBurny, A. Morelli, A. M. Z. Slawin, A. R. Thomson, D. B. Walker, J. Am. Chem. Soc.2009, 131, 3762.10.1021/ja809627jSearch in Google Scholar
[8] C. K. Johnson, Ortep, Oak Ridge Thermal Ellipsoid Plot Program for Crystal Structure Illustrations, Rep. ORNL-6895, Oak Ridge National Laboratory, Oak Ridge, TN, USA, 1965.Search in Google Scholar
[9] A. L. Spek, Acta Crystallogr.2009, D65, 148.10.1107/S090744490804362XSearch in Google Scholar
[10] E. Keller, J. S. Pierrard, Schakal99, Albert-Ludwigs University, Freiburg, Germany, 1999.Search in Google Scholar
[11] J. J. McKinnon, A. S. Mitchell, M. A. Spackman, Chem. Eur. J.1998, 4, 2136.10.1002/(SICI)1521-3765(19981102)4:11<2136::AID-CHEM2136>3.0.CO;2-GSearch in Google Scholar
[12] M. A. Spackman, J. J. McKinnon, D. Jayatilaka, CrystEngComm.2008, 10, 377.Search in Google Scholar
[13] C. B. Hübschle, P. Luger, J. Appl. Crystallogr.2006, 39, 901.10.1107/S0021889806041859Search in Google Scholar
[14] A. Volkov, P. Macchi, L. J. Farrugia, C. Gatti, P. R. Mallinson, T. Richter, T. Koritsánszky, XD2006, A computer program for multipole refinement, QTAIM analysis of charge densities and evaluation of intermolecular energies from experimental and theoretical structure factors, University of Buffalo, NY (USA); University of Milano, (Italy); University of Glasgow, (UK); CNRISTM, Milano (Italy); Middle Tennessee State University, TN, USA, 2006.Search in Google Scholar
[15] R. F. W. Bader, Atoms in Molecules – A Quantum Theory, Clarendon Press, Oxford, 1994.Search in Google Scholar
[16] A. Volkov, C. Gatti, Y. Abramov, P. Coppens, Acta Crystallogr.2000, A56, 252.10.1107/S0108767300001628Search in Google Scholar
[17] A. Volkov, H. F. King, P. Coppens, L. J. Farrugia, Acta Crystallogr.2006, A62, 400.10.1107/S0108767306026298Search in Google Scholar
[18] A. D. Becke, J. Chem. Phys.1993, 98, 5648.10.1063/1.464913Search in Google Scholar
[19] C. Lee, W. Yang, R. G. Parr, Phys. Rev.1988, B37, 785.10.1103/PhysRevB.37.785Search in Google Scholar
[20] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem.1994, 98, 11623.10.1021/j100096a001Search in Google Scholar
[21] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 (revision B.01), Gaussian, Inc., Wallingford, CT, USA, 2010.Search in Google Scholar
[22] F. Biegler-König, J. Schönbohm, D. A. Bayles, J. Comput. Chem.2001, 22, 545.10.1002/1096-987X(20010415)22:5<545::AID-JCC1027>3.0.CO;2-YSearch in Google Scholar
[23] E. R. Johnson, S. Keinan, P. Mori-Sanchez, J. Contreras-García, A. J. Cohen, W. Yang, J. Am.Chem. Soc.2010, 132, 6498.10.1021/ja100936wSearch in Google Scholar
[24] J. Contreras-García, E. Johnson, S. Keinan, R. Chaudret, J.-P. Piquemal, D. Beratan, W. Yang, J. Chem. Theor. Comp.2011, 7, 625.10.1021/ct100641aSearch in Google Scholar
[25] M. Kohout, Int. J. Quantum Chem.2004, 97, 651.10.1002/qua.10768Search in Google Scholar
[26] M. Kohout; F. R. Wagner, Y. Grin, Theor. Chem. Acc.2008, 119, 413.10.1007/s00214-007-0396-1Search in Google Scholar
[27] M. Kohout, DGRID-4.6, Radebeul, Germany, 2015.Search in Google Scholar
[28] P. de Silva, C. Corminboeuf, J. Chem. Theory Comput.2014, 10, 3745.10.1021/ct500490bSearch in Google Scholar
[29] N. Gillet, R. Chaudret, I. Contreras-García, W. Yang, B. Silvi, J.-P. Piquemal, J. Chem. Theor. Comput.2012, 8, 3993.10.1021/ct300234gSearch in Google Scholar
[30] D. Fang, R. Chaudret, J.-P. Piquemal, G. A. Cisneros, J. Chem. Theor. Comput.2013, 9, 2156.10.1021/ct400130bSearch in Google Scholar
[31] S. Mebs, Chem. Phys. Lett.2016, 651, 172.10.1016/j.cplett.2016.03.046Search in Google Scholar
[32] T. Koritsanszky, R. Flaig, D. Zobel, H. G. Krane, W. Morgenroth, P. Luger, Science1998, 279, 356.10.1126/science.279.5349.356Search in Google Scholar
[33] R. Flaig, T. Koritsanszky, R. Soyka, L. Häming, P. Luger, Angew. Chem. Int. Ed.2001, 40, 355.10.1002/1521-3773(20010119)40:2<355::AID-ANIE355>3.0.CO;2-RSearch in Google Scholar
[34] C. B. Hübschle, P. Luger, B. Dittrich, J. Appl. Crystallogr.2007, 40, 623.10.1107/S0021889807016524Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2018-0179).
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this Issue
- Analysis of two [2]catenanes based on electron densities from invariom refinement and results from DFT calculations
- Orthoamide und Iminiumsalze, XCVa. Umsetzungen von Orthoamiden von Alkin-Carbonsäuren mit Acetophenonen und Acetophenon-Phenylhydrazonen
- Metal-free, air-promoted, radical-mediated arylation of benzoquinone with phenylhydrazines
- Three-component condensation reaction of various aldehydes, dimedone and malononitrile catalyzed by boric acid in water in comparison with multifunctional ionic liquids as green catalytic systems
- Synthesis, characterization, and electrochemical study of a mononuclear Cu(II) complex with a 4-acyl pyrazolone ligand
- Synthesis of LaCoO3 powder by a combined mechanical/thermal process
- Preparation and molecular structures of N′-(2-heteroarylmethylidene)-3-(3-pyridyl)acrylohydrazides
- A new modification of [Ag4Br4(PPh3)4]: synthesis, structure and properties
- Magnetic and magnetocaloric properties of the coloured Heusler phases GdAg2Mg and REAgAuMg (RE=Gd, Tb, Dy)
Articles in the same Issue
- Frontmatter
- In this Issue
- Analysis of two [2]catenanes based on electron densities from invariom refinement and results from DFT calculations
- Orthoamide und Iminiumsalze, XCVa. Umsetzungen von Orthoamiden von Alkin-Carbonsäuren mit Acetophenonen und Acetophenon-Phenylhydrazonen
- Metal-free, air-promoted, radical-mediated arylation of benzoquinone with phenylhydrazines
- Three-component condensation reaction of various aldehydes, dimedone and malononitrile catalyzed by boric acid in water in comparison with multifunctional ionic liquids as green catalytic systems
- Synthesis, characterization, and electrochemical study of a mononuclear Cu(II) complex with a 4-acyl pyrazolone ligand
- Synthesis of LaCoO3 powder by a combined mechanical/thermal process
- Preparation and molecular structures of N′-(2-heteroarylmethylidene)-3-(3-pyridyl)acrylohydrazides
- A new modification of [Ag4Br4(PPh3)4]: synthesis, structure and properties
- Magnetic and magnetocaloric properties of the coloured Heusler phases GdAg2Mg and REAgAuMg (RE=Gd, Tb, Dy)