Startseite Effect of ZnO nanoparticles on optical textures and image analysis properties of 7O.O5 liquid crystalline compound
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of ZnO nanoparticles on optical textures and image analysis properties of 7O.O5 liquid crystalline compound

  • Gandu Srilekha , Pokkunuri Pardhasaradhi ORCID logo EMAIL logo , Boddapati Taraka Phani Madhav ORCID logo und Manepalli Ramakrishna Nanchara Rao
Veröffentlicht/Copyright: 18. Februar 2021

Abstract

The systematic studies are carried out on liquid crystalline N-(p-n-heptyloxybenzylidene)-p-n-pentyloxy aniline (7O.O5) pure compound and with dispersion of ZnO nanoparticles in 1 wt% respectively. The phase transition studies of the pure and LC nanocomposite are carried out using Polarizing Optical Microscope (POM) attached with hot stage along with digital camera and Differential Scanning Calorimetry (DSC) is used to measure enthalpy and transition temperature values. Further the presence of ZnO nano particles in 7O.O5 is determined by Scanning Electron Microscopy (SEM) analysis. It is identified that due to dispersion of nano particles SmG phase is Quenched and nematic thermal range is increased. To enhance the captured textural images, an algorithm that uses tuned intensification operators have been proposed in this article. Statistical parameters for enhanced output images are calculated and compared with existing algorithms such as Adaptive Gamma Correction (AGC) and Discrete Wavelet Transform – Singular Value Decomposition (DWT-SVD) to understand the effectiveness of proposed algorithm. Further, optical parameters have been computed to understand the thermo optical nature of liquid crystalline compounds.


Corresponding author: Pokkunuri Pardhasaradhi, Antennas and Liquid Crystals Research Center, Department of ECE, Koneru Lakshmaiah Education Foundation, Vaddeswaram522502, India, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by K L Deemed to be University under internal funding project File no. KLEF/IF/SEP/2019/002.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] M. Tejaswi, P. Pardhasaradhi, B. T. Madhav, et al.., “Spectroscopic studies on liquid crystalline p-n-nonyloxy benzoic acid (9oba) dispersed citrate capped gold nanoparticles,” Optik, vol. 219, p. 165151, 2020, https://doi.org/10.1016/j.ijleo.2020.165151.Suche in Google Scholar

[2] M. Tejaswi, P. Pardhasaradhi, B. T. P. Madhav, M. C. Rao, N. Krishna Mohan, and R. K. N. R. Manepalli, “Spectroscopic studies on liquid crystalline n-hexyloxy-cyanobiphenyl with dispersed citrate-capped gold nanoparticles in visible region,” Liq. Cryst., vol. 47, no. 6, pp. 918–938, 2020, https://doi.org/10.1080/02678292.2019.1688874.Suche in Google Scholar

[3] G. Srilekha, P. Pardhasaradhi, B. T. P. Madhav, R. K. N. R. Manepalli, and M. C. Rao, “Design and analysis of 6CB nematic liquid crystal-based rectangular patch antenna for S-band and C-band applications,” Z. Naturforsch., vol. 75, no. 10, pp. 863–875, 2020, https://doi.org/10.1515/zna-2020-0144.Suche in Google Scholar

[4] P. Pardhasaradhi, B. T. P. Madhav, D. P. Tripathi, R. K. N. R. Manepalli, and U. R. Jena, “Synthesis, characterisation and SPIE analysis in pure and nano-dispersed N-(p-n-hexyloxybenzylidene)-p-n-Nonyloxy aniline,” Liq. Cryst., vol. 46, no. 5, pp. 743–753, 2019, https://doi.org/10.1080/02678292.2018.1524080.Suche in Google Scholar

[5] D. P. Tripathi, P. Pardhasaradhi, B. T. P. Madhav, R. K. N. R. Manepalli, and U. R. Jena, “Estimation of higher order statistical parameters for image enhancement on pure and nano-dispersed dodecyloxyBenzoic acid,” Liq. Cryst., vol. 47, no. 9, pp. 1247–1263, 2020, https://doi.org/10.1080/02678292.2019.1710779.Suche in Google Scholar

[6] J. Sivasri, P. Pardhasaradhi, B. T. P. Madhav, M. Tejaswi, and R. K. N. R. Manepalli, “Birefringence studies on alkoxy benzoic acids with dispersed Fe3O4 nanoparticles,” Liq. Cryst., vol. 47, no. 3, pp. 330–344, 2020, https://doi.org/10.1080/02678292.2019.1647571.Suche in Google Scholar

[7] E. Nowinowski-Kruszelnicki, L. Jaroszewicz, Z Raszewski, et al.., “Liquid crystal cell for space-borne laser rangefinder to space mission applications,” Opto-Electron. Rev., vol. 20, no. 4, pp. 315–322, 2012, https://doi.org/10.2478/s11772-012-0045-7.Suche in Google Scholar

[8] G. Srilekha, B. T. P. Madhav, M. Sujatha, P. Pardhasaradhi, R. K. N. R. Manepalli, and M. C. Rao, “AR-ESIHE and ARS-ESIHE-based image enhancement methods on 9oba pure and nano dispersed liquid crystalline compound,” Mol. Cryst. Liq. Cryst., vol. 702, no. 1, pp. 1–20, 2020, https://doi.org/10.1080/15421406.2020.1724459.Suche in Google Scholar

[9] M. Tejaswi, P. Pardhasaradhi, B. T. Madhav, et al.., “Optical properties of liquid crystalline alkoxy benzoic acids with dispersed citrate-capped gold nanoparticles,” Z. Naturforsch., vol. 74, no. 11, pp. 1001–1022, 2019, https://doi.org/10.1515/zna-2019-0100.Suche in Google Scholar

[10] P. Jayaprada, P. Pardhasaradhi, B. T. Madhav, et al.., “Effect of ZnO nanoparticles dispersed in liquid crystalline p-n-propoxy/propyl benzoic acids and mixtures–optical studies,” Mol. Cryst. Liq. Cryst., vol. 689, no. 1, pp. 10–33, 2019, https://doi.org/10.1080/15421406.2019.1670942.Suche in Google Scholar

[11] P. Jayaprada, M. C. Rao, P. Pardhasaradhi, P. V. Datta Prasad, R. K. N. R. Manepalli, and V. G. K. M. Pisipati, “Optical studies of n-octyloxy-cyanobiphenyl (8ocb) with dispersed ZnO nanoparticles for display device application,” Optik, vol. 185, no. April, pp. 1226–1237, 2019, https://doi.org/10.1016/j.ijleo.2019.04.060.Suche in Google Scholar

[12] S. Kumar, “Discotic-functionalized nanomaterials,” Synth. React. Inorg. Metal-Org. Nano-Metal Chem., vol. 37, no. 5, pp. 327–331, 2007, https://doi.org/10.1080/15533170701385754.Suche in Google Scholar

[13] P. Khushboo, P. Malik. Sharma, and K. K. Raina, ““Textural, thermal, optical and electrical properties of Iron nanoparticles dispersed 4′-(Hexyloxy)-4-biphenylcarbonitrile liquid crystal mixture,” Liq. Cryst., vol. 44, no. 11, pp. 1717–1726, 2017, https://doi.org/10.1080/02678292.2017.1328747.Suche in Google Scholar

[14] K. Pal, S. Thomas, and M. L. N. Madhu Mohan, “Evaluation of versatile cds nanomaterials based liquid crystals switchable device,” J. Nanosci. Nanotechnol., vol. 17, no. 4, pp. 2401–2412, 2017, https://doi.org/10.1166/jnn.2017.13457.Suche in Google Scholar

[15] B. T. P. Madhav, P. Pardhasaradhi, R. K. N. R. Manepalli, and V. G. K. M. Pisipati, “Histogram equalisation technique to analyse induced cholesteric phase in nanodoped liquid crystalline compound,” Liq. Cryst., vol. 42, no. 7, pp. 989–997, 2015, https://doi.org/10.1080/02678292.2015.1012752.Suche in Google Scholar

[16] Z. Yao, Z. Lai, and C. Wang, “Image enhancement based on equal area dualistic sub-image and non-parametric modified histogram equalization method,” in Proc. – 2016 9th Int. Symp. Comput. Intell. Des. Isc., vol. 1, no. 1, Hangzhou, China, IEEE, 2016, pp. 447–450.10.1109/ISCID.2016.1110Suche in Google Scholar

[17] H. D. Cheng and X. J. Shi, “A simple and effective histogram equalization approach to image enhancement,” Digit. Signal Process., vol. 14, no. 2, pp. 158–170, 2004, https://doi.org/10.1016/j.dsp.2003.07.002.Suche in Google Scholar

[18] S. C. Huang, F. C. Cheng, and Y. S. Chiu, “Efficient contrast enhancement using adaptive gamma correction with weighting distribution,” IEEE Trans. Image Process., vol. 22, no. 3, pp. 1032–1041, 2013, https://doi.org/10.1109/TIP.2012.2226047.Suche in Google Scholar

[19] M. Bertero and P. Boccacci, “Singular value decomposition (SVD),” Introd. Inverse Probl. Imag., vol. 7, no. 2, pp. 333–337, 2004, https://doi.org/10.1887/0750304359/b461c9.Suche in Google Scholar

[20] A. Łoza, D. R. Bull, P. R. Hill, and A. M. Achim, “Automatic contrast enhancement of low-light images based on local statistics of wavelet coefficients,” Digit. Signal Process., vol. 23, no. 6, pp. 1856–1866, 2013, https://doi.org/10.1016/j.dsp.2013.06.002.Suche in Google Scholar

[21] T. Chaira and A. Ray, Fuzzy Image Processing and Applications with MATLAB, Boca Raton, CRC Press, 2009, pp. 49–50.Suche in Google Scholar

[22] T. Celik and H. C. Li, “Residual spatial entropy-based image contrast enhancement and gradient-based relative contrast measurement,” J. Mod. Optic., vol. 63, no. 16, pp. 1600–1617, 2016, https://doi.org/10.1080/09500340.2016.1163427.Suche in Google Scholar

[23] M. Yang and A. Sowmya, “An underwater color image quality evaluation metric,” IEEE Trans. Image Process., vol. 24, no. 12, pp. 6062–6071, 2015, https://doi.org/10.1109/TIP.2015.2491020.Suche in Google Scholar

[24] J. V. L., R. Gopikakumari, and I. E. M. “, “A new image enhancement metric for contrast and sharpness measurements,” Int. J. Comput. Appl., vol. 79, no. 9, pp. 1–9, 2013, https://doi.org/10.5120/13766-1620.Suche in Google Scholar

[25] S. S. Sastry, K. L. Sarada, K. Mallika, L. T. Kumar, and H. S. Tiong, “Determination of thermo optical parameters using image analysis technique in nBA: 7HB hydrogen bonded liquid crystals,” Int. J. Innovat. Res. Sci. Technol. Eng., vol. 04, no. 01, pp. 18470–18479, 2015, https://doi.org/10.15680/ijirset.2015.0401010.Suche in Google Scholar

[26] N. Avci, A. Nesrullajev, and Ş. Oktik, “Nonlinear thermotropic and thermo-optical behaviour of planar oriented textures in nematic liquid crystals at phase transitions,” Braz. J. Phys., vol. 40, no. 2, pp. 224–227, 2010, https://doi.org/10.1590/S0103-97332010000200017.Suche in Google Scholar

Received: 2020-10-21
Accepted: 2021-01-25
Published Online: 2021-02-18
Published in Print: 2021-04-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2020-0302/pdf
Button zum nach oben scrollen