Home Dirac cones for graph models of multilayer AA-stacked graphene sheets
Article
Licensed
Unlicensed Requires Authentication

Dirac cones for graph models of multilayer AA-stacked graphene sheets

  • César R. de Oliveira ORCID logo and Vinícius L. Rocha ORCID logo
Published/Copyright: February 15, 2021

Abstract

We propose an extension, of a quantum graph model for a single sheet of graphene, to multilayer AA-stacked graphene and also to a model of the bulk graphite. Spectra and Dirac cones are explicitly characterized for bilayer and trilayer graphene, as well as for graphite. For weak layer interaction (as proposed in the text), simple perturbation arguments also cover any number of layers and it mathematically recovers basic cone existences from the theoretical and experimental physics literature; its main strength is its simplicity.


Corresponding author: César R. de Oliveira, Departamento de Matemática, UFSCar, São Carlos, SP, 13560-970Brazil, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: CRdO thanks the partial support by Conselho Nacional de Desenvolvimento Científico e Tecnológico (a Brazilian government agency, under contract 303503/2018-1). VLR thanks the financial support by Coordenaçãoo de Aperfeiçoamento de Pessoal de Nível Superior (a Brazilian government agency).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] M. I. Katsnelson, “Graphene: carbon in two dimensions,” Mater. Today, vol. 10, pp. 20–27, 2007, https://doi.org/10.1016/s1369-7021(06)71788-6.Search in Google Scholar

[2] S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional graphene,” Rev. Mod. Phys., vol. 83, pp. 407–470, 2011, https://doi.org/10.1103/revmodphys.83.407.Search in Google Scholar

[3] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys., vol. 81, pp. 109–162, 2014.10.1103/RevModPhys.81.109Search in Google Scholar

[4] P. R. Wallace, “The band theory of graphite,” Phys. Rev., vol. 71, pp. 622–634, 1947, https://doi.org/10.1103/physrev.71.622.Search in Google Scholar

[5] C. Amovilli, F. Leys, and N. March, “Electronic energy spectrum of two-dimensional solids and a chain of C atoms from a quantum network model,” J. Math. Chem., vol. 36, pp. 93–112, 2004, https://doi.org/10.1023/b:jomc.0000038775.67243.f2.10.1023/B:JOMC.0000038775.67243.f2Search in Google Scholar

[6] C. A. Coulson, “Note on the applicability of the free-electron network model to metals,” Proc. Phys. Soc., vol. 67, pp. 608–614, 1954, https://doi.org/10.1088/0370-1298/67/7/305.Search in Google Scholar

[7] C. L. Fefferman and M. I. Weinstein, “Honeycomb lattice potentials and Dirac cones,” J. Am. Math. Soc., vol. 25, pp. 1169–1220, 2012, https://doi.org/10.1090/s0894-0347-2012-00745-0.Search in Google Scholar

[8] P. Kuchment and O. Post, “On the spectra of carbon nano-structures,” Commun. Math. Phys., vol. 275, pp. 805–826, 2007, https://doi.org/10.1007/s00220-007-0316-1.Search in Google Scholar

[9] L. Pauling, “The diamagnetic anisotropy of aromatic molecules,” J. Chem. Phys., vol. 4, pp. 673–677, 1936, https://doi.org/10.1063/1.1749766.Search in Google Scholar

[10] K. Ruedenberg and C. W. Scherr, “Free-electron network model for conjugated systems. I. Theory,” J. Chem. Phys., vol. 21, pp. 1565–1581, 1953, https://doi.org/10.1063/1.1699299.Search in Google Scholar

[11] M. S. P. Eastham, The Spectral Theory of Periodic Differential Equations, Edinburgh, Scottish Acad. Press, 1973.Search in Google Scholar

[12] M. Reed and B. Simon, Methods of Modern Mathematical Physics IV: Analysis of Operators, New York, Academic Press, 1978.Search in Google Scholar

[13] C. Bao, W. Yao, E. Wang, et al., “Stacking-dependent electronic structure of trilayer graphene resolved by nanospot angle-resolved photoemission spectroscopy,” Nano Lett., vol. 17, pp. 564–1568, 2017, https://doi.org/10.1021/acs.nanolett.6b04698.Search in Google Scholar

[14] L. C. Campos, T. Taychatanapat, M. Serbyn, et al., “Landau level splittings, phase transitions, and nonuniform charge distribution in trilayer graphene,” Phys. Rev. Lett., vol. 117, p. 066601, 2016, https://doi.org/10.1103/physrevlett.117.066601.Search in Google Scholar

[15] S. Latil and L. Henrard, “Charge carriers in few-layer graphene films,” Phys. Rev. Lett., vol. 97, p. 036803, 2006, https://doi.org/10.1103/physrevlett.97.036803.Search in Google Scholar

[16] H. Liu, H. Jiang, and X. C. Xie, “Intrinsic superconductivity in ABA-stacked trilayer graphene,” AIP Adv., vol. 2, p. 041405, 2012, https://doi.org/10.1063/1.4773226.Search in Google Scholar

[17] Z. Liu, K. Suenaga, P. J. F. Harris, and S. Iijima, “Open and closed edges of graphene layers,” Phys. Rev. Lett., vol. 102, p. 015501, 2009, https://doi.org/10.1103/physrevlett.102.015501.Search in Google Scholar

[18] E. McCann, D. S. L. Abergel, and V. I. Fal’ko, “The low energy electronic band structure of bilayer graphene,” Eur. Phys. J. Spec. Top., vol. 148, pp. 91–103, 2007, https://doi.org/10.1140/epjst/e2007-00229-1.Search in Google Scholar

[19] E. McCann and M. Koshino, “The electronic properties of bilayer graphene,” Rep. Prog. Phys., vol. 76, p. 056503, 2013, https://doi.org/10.1088/0034-4885/76/5/056503.Search in Google Scholar

[20] H. Min and A. H. MacDonald, “Electronic structure of multilayer graphene,” Prog. Theor. Phys. Suppl., vol. 176, pp. 227–252, 2008, https://doi.org/10.1143/ptps.176.227.Search in Google Scholar

[21] B. Partoens and F. M. Peeters, “From graphene to graphite: electronic structure around the K point,” Phys. Rev. B, vol. 74, p. 075404, 2006, https://doi.org/10.1103/physrevb.74.075404.Search in Google Scholar

[22] K. R. Paton, “Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids,” Nat. Mater., vol. 13, pp. 624–630, 2014, https://doi.org/10.1038/nmat3944.Search in Google Scholar

[23] A. V. Rozhkov, A. O. Sboychakova, A. L. Rakhmanova, and F. Nori, “Electronic properties of graphene-based bilayer systems,” Phys. Rep., vol. 648, pp. 1–104, 2016, https://doi.org/10.1016/j.physrep.2016.07.003.Search in Google Scholar

[24] M. Polini, F. Guinea, M. Lewenstein, H. C. Manoharan, and V. Pellegrini, “Artificial honeycomb lattices for electrons, atoms and photons,” Nat. Nanotechnol., vol. 8, pp. 625–633, 2013, https://doi.org/10.1038/nnano.2013.161.Search in Google Scholar

[25] T. Jacqmin, I. Carusotto, I. Sagnes, et al., “Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons,” Phys. Rev. Lett., vol. 112, p. 116402, 2014, https://doi.org/10.1103/physrevlett.112.116402.Search in Google Scholar

[26] T. Ozawa, H. M. Price, A. Amo, et al., “Topological photonics,” Rev. Mod. Phys., vol. 91, p. 015006, 2019.10.1103/RevModPhys.91.015006Search in Google Scholar

[27] B. Dietz and A. Richter, “From graphene to fullerene: experiments with microwave photonic crystals,” Phys. Scripta, vol. 94, p. 014002, 2019, https://doi.org/10.1088/1402-4896/aaec96.Search in Google Scholar

[28] P. L. de Andres, R. Ramírez, and J. A. Vergés, “Strong covalent bonding between two graphene layers,” Phys. Rev. B, vol. 77, p. 045403, 2008, https://doi.org/10.1103/physrevb.77.045403.Search in Google Scholar

[29] C. R. de Oliveira and V. L. Rocha, “Dirac cones for bi- and trilayer Bernal-stacked graphene in a quantum graph model,” J. Phys. A Math. Theor., vol. 53, p. 505201, 2020. https://doi.org/10.1088/1751-8121/abc6c1.Search in Google Scholar

[30] S. Y. Zhou, G. H. Gweon, J. Graf, et al., “First direct observation of Dirac fermions in graphite,” Nat. Phys., vol. 2, pp. 595–599, 2006, https://doi.org/10.1038/nphys393.Search in Google Scholar

[31] E. Korotyaev and N. Saburova, “Scattering on periodic metric graphs,” Rev. Math. Phys., vol. 32, p. 2050024, 2020, https://doi.org/10.1142/s0129055x20500245.Search in Google Scholar

[32] Ya. Granovskyi, M. Malamud, and H. Neidhardt, “Non-compact quantum graphs with summable matrix potentials,” Ann. Henri Poincaré, vol. 22, pp. 1–47, 2021, https://doi.org/10.1007/s00023-020-00977-3.Search in Google Scholar

[33] L. Fisher, W. Li, and S. P. Shipman, Reducible Fermi Surface for Multi-Layer Quantum Graphs Including Stacked Graphene, 2020, p. 13764. arXiv:2005[math-ph].10.1007/s00220-021-04120-zSearch in Google Scholar

[34] Shipman, S. P., Reducible Fermi surfaces for non-symmetric bilayer quantum-graph operators, J. Spectr. Theory 10 (2020) 33–72, https://doi.org/10.4171/JST/285.Search in Google Scholar

[35] G. Berkolaiko and A. Comech, “Symmetry and Dirac points in graphene spectrum,” J. Spectr. Theory, vol. 8, pp. 1099–1147, 2018, https://doi.org/10.4171/jst/223.Search in Google Scholar

[36] P. Kuchment, “Quantum graphs I. Some basic structures,” Waves Random Media, vol. 14, pp. S107–S128, 2004, https://doi.org/10.1088/0959-7174/14/1/014.Search in Google Scholar

[37] V. Kostrykin and R. Schrader, “Kirchhoff’s rule for quantum wires,” J. Phys. A Math. Gen., vol. 32, pp. 595–630, 1999, https://doi.org/10.1088/0305-4470/32/4/006.Search in Google Scholar

[38] Berkolaiko, G., Kuchment, P., Introduction to Quantum Graphs, American Mathematical Society, Mathematical Surveys and Monographs, Rhode Island, 2013.10.1090/surv/186Search in Google Scholar

[39] P. Kuchment, Floquet Theory for Partial Differential Equations, New York, Birkh auser, 1993.10.1007/978-3-0348-8573-7Search in Google Scholar

[40] M. B. Brown, M. S. P. Eastham, and K. M. Schmidt, Periodic Differential Operators, Basel, Birkhauser, 2013.10.1007/978-3-0348-0528-5Search in Google Scholar

[41] W. Magnus and S. Winkler, Hill’s Equation, New York, Wiley, 1966.Search in Google Scholar

[42] N. T. Do and P. Kuchment, “Quantum graph spectra of a graphyne structure,” Nanoscale Systems MMTA, vol. 2, pp. 107–123, 2013, https://doi.org/10.2478/nsmmt-2013-0007.Search in Google Scholar

Received: 2020-12-01
Accepted: 2021-01-20
Published Online: 2021-02-15
Published in Print: 2021-04-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 2.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2020-0330/html
Scroll to top button