Abstract
In this paper, the inverse scattering approach is applied to the Kundu-Eckhaus equation with two cases of zero boundary condition (ZBC) and nonzero boundary conditions (NZBCs) at infinity. Firstly, we obtain the exact formulae of soliton solutions of three cases of N simple poles, one higher-order pole and multiple higher-order poles via the associated Riemann-Hilbert problem (RHP). Moreover, given the initial data that allow for the presence of discrete spectrum, the higher-order rogue waves of the equation are presented. For the case of NZBCs, we can construct the infinite order rogue waves through developing a suitable RHP. Finally, by choosing different parameters, we aim to show some prominent characteristics of this solution and express them graphically in detail. Our results should be helpful to further explore and enrich the related nonlinear wave phenomena.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 11871180
Acknowledgments
We express our sincere thanks to the editor and reviewers for their valuable comments.
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: This work is supported by the National Natural Science Foundation of China under Grant No. 11871180.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
[1] G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. New York, Academic Press, 2012.Search in Google Scholar
[2] Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, New York, Academic Press, 2013.Search in Google Scholar
[3] B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Optic. B, vol. 7, p. R53, 2005.10.1088/1464-4266/7/5/R02Search in Google Scholar
[4] H. Bailung and Y. Nakamura, “Observation of modulational instability in a multi-component plasma with negative ions,” J. Plasma Phys., vol. 50, p. 231, 1993.10.1017/S0022377800027033Search in Google Scholar
[5] L. Pitaevskii and S. Stringari, Bose-Einstein Condensation and Superfluidity, Oxford, Oxford University Press, 2016.10.1093/acprof:oso/9780198758884.001.0001Search in Google Scholar
[6] V. B. Matveev and M. A. Salle, Darboux Transformation and Solitons, Berlin, Springer, 1991.10.1007/978-3-662-00922-2Search in Google Scholar
[7] M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge, Cambridge University Press, 1991.10.1017/CBO9780511623998Search in Google Scholar
[8] A. S. Fokas, “A unified transform method for solving linear and certain nonlinear PDEs,” Proc. R. Soc. Lond. A, vol. 453, p. 1411, 1997.10.1098/rspa.1997.0077Search in Google Scholar
[9] P. Deift and X. Zhou, “A steepest descent method for oscillatory Riemann-Hilbert problems,” Ann. Math., vol. 137, p. 295, 1993.10.1090/S0273-0979-1992-00253-7Search in Google Scholar
[10] R. Hirota, Direct Methods in Soliton Theory, Berlin, Springer, 2004.10.1017/CBO9780511543043Search in Google Scholar
[11] X. B. Wang, S. F. Tian, C. Y. Qin, and T. T. Zhang, “Lie symmetry analysis, analytical solutions, and conservation laws of the generalised Whitham–Broer–Kaup–Like equations,” Z. Naturforsch., vol. 72, p. 269, 2017.10.1515/zna-2016-0389Search in Google Scholar
[12] X. W. Yan, S. F. Tian, M. J. Dong, and T. T. Zhang, “Nonlocal symmetries, conservation laws and interaction solutions of the generalised dispersive modified Benjamin–Bona–Mahony equation,” Z. Naturforsch., vol. 73, p. 399, 2018.10.1515/zna-2017-0436Search in Google Scholar
[13] X. B. Wang and B. Han, “Riemann–Hilbert problem and Multi-Soliton solutions of the integrable spin-1 Gross–Pitaevskii equations,” Z. Naturforsch., vol. 74, p. 139, 2019.10.1515/zna-2018-0387Search in Google Scholar
[14] H. C. Ma and S. Y. Lou, “Solutions generated from the symmetry group of the (2 + 1)-dimensional Sine-Gordon system,” Z. Naturforsch., vol. 60, p. 229, 2005.10.1515/zna-2005-0403Search in Google Scholar
[15] Z. Dong, F. Huang, and Y. Chen, “Symmetry reductions and exact solutions of the Two-Layer model in atmosphere,” Z. Naturforsch., vol. 66, p. 75, 2011.10.1515/zna-2011-1-212Search in Google Scholar
[16] C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, “Method for solving the Korteweg-deVries equation,” Phys. Rev. Lett., vol. 19, p. 1095, 1967.10.1103/PhysRevLett.19.1095Search in Google Scholar
[17] M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, “Nonlinear-Evolution equations of physical significance,” Phys. Rev. Lett., vol. 31, p. 125, 1973.10.1103/PhysRevLett.31.125Search in Google Scholar
[18] M. Wadati, “The modified Korteweg-de Vries equation,” J. Phys. Soc. Jpn., vol. 34, pp. 1289–1296, 1973.10.1143/JPSJ.34.1289Search in Google Scholar
[19] A. Constantin, V. S. Gerdjikov, and R. I. Ivanov, “Inverse scattering transform for the Camassa-Holm equation,” Inverse Probl., vol. 22, p. 2197, 2006.10.1088/0266-5611/22/6/017Search in Google Scholar
[20] M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, “Method for solving the Sine-Gordon equation,” Phys. Rev. Lett., vol. 30, p. 1262, 1973.10.1103/PhysRevLett.30.1262Search in Google Scholar
[21] M. J. Ablowitz, D. B. Yaacov, and A. Fokas, “On the inverse scattering transform for the Kadomtsev-Petviashvili equation,” Stud. Appl. Math., vol. 69, p. 135, 1983.10.1002/sapm1983692135Search in Google Scholar
[22] A. Constantin, R. Ivanov, and J. Lenells, “Inverse scattering transform for the Degasperis–Procesi equation,” Nonlinearity, vol. 23, p. 2559, 2010.10.1088/0951-7715/23/10/012Search in Google Scholar
[23] B. Prinari, F. Demontis, S. Li, and T. P. Horikis, “Inverse scattering transform and soliton solutions for square matrix nonlinear Schrodinger equations with non-zero boundary conditions,” Physica D, vol. 368, p. 22, 2018.10.1016/j.physd.2017.12.007Search in Google Scholar
[24] W. Q. Peng, S. F. Tian, X. B. Wang, T. T. Zhang, and Y. Fang, “Riemann-Hilbert method and multi-soliton solutions for three-component coupled nonlinear Schrödinger equations,” J. Geom. Phys., vol. 146, p. 103508, 2019.10.1016/j.geomphys.2019.103508Search in Google Scholar
[25] W. X. Ma, “The inverse scattering transform and soliton solutions of a combined modified Korteweg–de Vries equation,” J. Math. Anal. Appl., vol. 471, p. 796, 2019.10.1016/j.jmaa.2018.11.014Search in Google Scholar
[26] W. X. Ma, “Inverse scattering and soliton solutions of nonlocal complex reverse-spacetime mKdV equations,” J. Geom. Phys., vol. 157, p. 103845, 2020.10.1016/j.geomphys.2020.103845Search in Google Scholar
[27] J. Xu and E. G. Fan, “The unified transform method for the Sasa–Satsuma equation on the half-line,” Proc. R. Soc. A, vol. 469, p. 20130068, 2013.10.1098/rspa.2013.0068Search in Google Scholar PubMed PubMed Central
[28] S. F. Tian, “The mixed coupled nonlinear Schrodinger equation on the half-line via the Fokas method,” Proc. R. Soc. A, vol. 472, p. 20160588, 2016.10.1098/rspa.2016.0588Search in Google Scholar PubMed PubMed Central
[29] S. F. Tian, “Initial–boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method,” J. Differ. Equ., vol. 262, p. 506, 2017.10.1016/j.jde.2016.09.033Search in Google Scholar
[30] D. S. Wang, D. J. Zhang, and J. Yang, “Integrable properties of the general coupled nonlinear Schrodinger equations,” J. Math. Phys., vol. 51, p. 023510, 2010.10.1063/1.3290736Search in Google Scholar
[31] Y. Zhang, J. Rao, Y. Cheng, and J. He, “Riemann–Hilbert method for the Wadati–Konno–Ichikawa equation: N simple poles and one higher-order pole,” Physica D, vol. 399, p. 173, 2019.10.1016/j.physd.2019.05.008Search in Google Scholar
[32] Y. Zhang and J. He, “Bound-State soliton solutions of the Nonlinear Schrödinger equation and their asymmetric decompositions,” Chin. Phys. Lett., vol. 36, p. 030201, 2019.10.1088/0256-307X/36/3/030201Search in Google Scholar
[33] G. Zhang and Z. Yan, “Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with non-zero boundary conditions,” Physica D, vol. 402, p. 132170, 2020.10.1016/j.physd.2019.132170Search in Google Scholar
[34] X. Geng, M. Chen, and K. Wang, “Long-time asymptotics of the coupled modified Korteweg–de Vries equation,” J. Geom. Phys., vol. 142, p. 151, 2019.10.1016/j.geomphys.2019.04.009Search in Google Scholar
[35] X. B. Wang and B. Han, “Inverse scattering transform of an extended nonlinear Schrödinger equation with nonzero boundary conditions and its multisoliton solutions,” J. Math. Anal. Appl., vol. 487, p. 123968, 2020.10.1016/j.jmaa.2020.123968Search in Google Scholar
[36] X. B. Wang and B. Han, “A Riemann-Hilbert approach to a generalized Nonlinear Schrödinger equation on the quarter plane,” Math. Phys. Anal. Geom., vol. 23, p. 25, 2020.10.1007/s11040-020-09347-1Search in Google Scholar
[37] X. W. Yan, S. F. Tian, M. J. Dong, and T. T. Zhang, “Rogue waves and their dynamics on Bright-Dark soliton background of the Coupled Higher Order Nonlinear Schrodinger equation,” J. Phys. Soc. Jpn., vol. 88, p. 074004, 2019.10.7566/JPSJ.88.074004Search in Google Scholar
[38] X. W. Yan, “Lax pair, Darboux-dressing transformation and localized waves of the coupled mixed derivative nonlinear Schrodinger equation in a birefringent optical fiber,” Appl. Math. Lett., vol. 107, p. 106414, 2020.10.1016/j.aml.2020.106414Search in Google Scholar
[39] D. Bilman and P. Miller, “A robust inverse scattering transform for the focusing Nonlinear Schrödinger equation,” Commun. Pure Appl. Math., vol. 72, p. 1722, 2019.10.1002/cpa.21819Search in Google Scholar
[40] N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Rogue waves and rational solutions of the nonlinear Schrodinger equation,” Phys. Rev. E, vol. 80, p. 026601, 2009.10.1103/PhysRevE.80.026601Search in Google Scholar PubMed
[41] A. Chowdury, A. Ankiewicz, and N. Akhmediev, “Moving breathers and breather-to-soliton conversions for the Hirota equation,” Proc. R. Soc. A, vol. 471, p. 2180, 2015.10.1098/rspa.2015.0130Search in Google Scholar
[42] Y. Zhang, X. J. Nie, and Zhaqilao, “Rogue wave solutions for the coupled cubic–quintic nonlinear Schrodinger equations in nonlinear optics,” Phys. Lett. A, vol. 378, p. 191, 2014.10.1016/j.physleta.2013.11.010Search in Google Scholar
[43] J. S. He, H. R. Zhang, L. H. Wang, K. Porsezian, and A. S. Fokas, “Generating mechanism for higher-order rogue waves,” Phys. Rev. E, vol. 87, p. 052914, 2013.10.1103/PhysRevE.87.052914Search in Google Scholar PubMed
[44] L. C. Zhao, B. L. Guo, and L. M. Ling, “High-order Rogue wave solutions for the Coupled Nonlinear Schrodinger equations-II,” J. Math. Phys., vol. 57, p. 043508, 2016.10.1063/1.4947113Search in Google Scholar
[45] X. B. Wang, S. F. Tian, and T. T. Zhang, “Characteristics of the breather and rogue waves in a (2+1)-dimensional nonlinear Schrodinger equation,” Proc. Am. Math. Soc., vol. 146, p. 3353, 2018.10.1090/proc/13765Search in Google Scholar
[46] X. B. Wang and B. Han, “Vector nonlinear waves in a Two-Component Bose–Einstein condensate system,” J. Phys. Soc. Japan, vol. 89, p. 124003, 2020.10.7566/JPSJ.89.124003Search in Google Scholar
[47] X. B. Wang, S. F. Tian, and T. T. Zhang, “On quasi-periodic waves and rogue waves to the (4+1)-dimensional nonlinear Fokas equation,” J. Math. Phys., vol. 59, p. 073505, 2018.10.1063/1.5046691Search in Google Scholar
[48] X. B. Wang and B. Han, “The three-component coupled nonlinear Schrodinger equation: Rogue waves on a multi-soliton background and dynamics,” Europhys. Lett., vol. 126, p. 15001, 2018.10.1209/0295-5075/126/15001Search in Google Scholar
[49] D. Bilman, L. M. Ling, and P. Miller, “Extreme superposition: rogue waves of infinite order and the Painlevé-III hierarchy,” Duke Math. J., vol. 169, p. 671, 2020.10.1215/00127094-2019-0066Search in Google Scholar
[50] A. Kundu, “Landau-Lifshitz and higher order nonlinear systems gauge generated from nonlinear Schrodinger type equations,” J. Math. Phys., vol. 25, p. 3433, 1984.10.1063/1.526113Search in Google Scholar
[51] X. Wang, B. Yang, Y. Chen, and Y. Yang, “Higher-order rogue wave solutions of the Kundu–Eckhaus equation,” Phys. Scripta, vol. 89, p. 095210, 2014.10.1088/0031-8949/89/9/095210Search in Google Scholar
[52] Q. Z. Zhu, J. Xu, and E. G. Fan, “The Riemann-Hilbert problem and long-time asymptotics for the Kundu-Eckhaus equation with decaying initial value,” Appl. Math. Lett., vol. 76, p. 81, 2018.10.1016/j.aml.2017.08.006Search in Google Scholar
[53] D. S. Wang, B. Guo, and X. Wang, “Long-time asymptotics of the focusing Kundu-Eckhaus equation with nonzero boundary conditions,” J. Differ. Equ., vol. 266, pp. 5209–5253, 2019.10.1016/j.jde.2018.10.053Search in Google Scholar
[54] N. Guo and J. Xu, “Inverse scattering transform for the Kundu-Eckhaus Equation with nonzero boundary con- ditio,” arXiv:1912.11424.Search in Google Scholar
[55] J. J. Yang, S. F. Tian, and Z. Q. Li, “Inverse scattering transform and soliton solutions for the focusing Kundu-Eckhaus equation with nonvanishing boundary conditions,” arXiv:1912.11424.Search in Google Scholar
[56] L. L. Wen and E. G. Fan, “The Riemann–Hilbert approach to focusing Kundu–Eckhaus equation with non-zero boundary conditions,” Mod. Phys. Lett. B, vol. 34, p. 2050332, 2020.10.1142/S0217984920503327Search in Google Scholar
[57] D. Qiu, J. He, Y. Zhang, and K. Porsezian, “The Darboux transformation of the Kundu–Eckhaus equation,” Proc. R. Soc. A, vol. 71, p. 20150236, 2015.10.1098/rspa.2015.0236Search in Google Scholar
[58] X. B. Wang and B. Han, “Pure soliton solutions of the nonlocal Kundu–Nonlinear Schrodinger equation,” Theor. Math. Phys., vol. 206, p. 40, 2021.10.1134/S0040577921010037Search in Google Scholar
[59] M. J. Ablowitz, B. Prinari, and A. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems, Cambridge, UK, Cambridge University Press, 2004.10.1017/CBO9780511546709Search in Google Scholar
[60] A. S. Fokas, A Unified Approach to Boundary Value Problems, Philadelphia, SIAM, 2008.10.1137/1.9780898717068Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- General
- Rapid Communication
- All waves have a zero tunneling time
- Atomic, Molecular & Chemical Physics
- Studies of local structures for Cu2+ centers in M2Zn(SO4)2·6H2O (M = NH4 and Rb) crystals
- Dynamical Systems & Nonlinear Phenomena
- Dynamics of liquid drop on a vibrating micro-perforated plate
- Inverse scattering method for the Kundu-Eckhaus equation with zero/nonzero boundary conditions
- Evolution of nonlinear stationary formations in a quantum plasma at finite temperature
- Solid State Physics & Materials Science
- Effect of ZnO nanoparticles on optical textures and image analysis properties of 7O.O5 liquid crystalline compound
- First-principles study on band gaps and transport properties of van der Waals WSe2/WTe2 heterostructure
- Dirac cones for graph models of multilayer AA-stacked graphene sheets
Articles in the same Issue
- Frontmatter
- General
- Rapid Communication
- All waves have a zero tunneling time
- Atomic, Molecular & Chemical Physics
- Studies of local structures for Cu2+ centers in M2Zn(SO4)2·6H2O (M = NH4 and Rb) crystals
- Dynamical Systems & Nonlinear Phenomena
- Dynamics of liquid drop on a vibrating micro-perforated plate
- Inverse scattering method for the Kundu-Eckhaus equation with zero/nonzero boundary conditions
- Evolution of nonlinear stationary formations in a quantum plasma at finite temperature
- Solid State Physics & Materials Science
- Effect of ZnO nanoparticles on optical textures and image analysis properties of 7O.O5 liquid crystalline compound
- First-principles study on band gaps and transport properties of van der Waals WSe2/WTe2 heterostructure
- Dirac cones for graph models of multilayer AA-stacked graphene sheets